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Abstrakt

Tato práce se zaob́ırá tvorbou softwaru pro mobilńıho autonomńıho robota pro soutěž

Eurobot a předevš́ım možnostmi časové analýzy takového softwaru. V rámci práce byla

vytvořena metoda pro přesné měřeńı času na ćılovém vestavěném systému s procesorem

architektury PowerPC. Tato metoda byla použita pro časovou analýzu vybraných část́ı

ř́ıdićıho softwaru pro mobilńıho robota. Byla také provedena př́ıpadová studie zabývaj́ıćı

se možnostmi časové analýzy zdrojového kódu, vygenerovaného automaticky ze sim-

ulačńıho schématu MATLAB/Simulink pomoćı nástroje Real-Time Workshop.
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Abstract

The aim of this thesis is to describe control software for an autonomous mobile robot

for the Eurobot competition and especially to explore possibilities of timing analysis of

the software. A method for precise time measurement on a target embedded system based

on PowerPC processor was established. The method was then used to measure selected

parts of the mobile robot control software. A case-study was carried out, describing

posibilities of timing analysis of an application code generated automatically from a

MATLAB/Simulink simulation model using Real-Time Workshop plugin.
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Chapter 1

Introduction

Timing analysis is an important part of control applications design process. Worst case

execution time is a key concern of safety critical applications developers, especially in

automotive or aerospace industry. Machinery control is also one of application fields

where timing analysis is crucial for propper function of a control application. Modern

control theory offers many elaborate and sophisticated control algorithms, but for these

to work, time constraints on the execution time of their actual implementation must be

met.

Worst case execution-time (WCET) analysis methods are generally divided into two

categories, according to the approach taken when doing assumptions on WCET parame-

ters of a code block. An overview of the methods used and tools available for this purpose

is given for example in (Wilhelm et al., 2008).

The first category of methods used for WCET analysis is referred to as statical anal-

ysis. Statical analysis is based on mathematical models of the system (mostly the CPU)

the application under analysis is running on and on analysis of all possible control flows

in the application. This method, although it can produce very tight WCET estimates, is

very demanding, because its results highly depend on the accuracy of the created model.

As modern microcontrollers have still more and more complicated architectures, deriving

of such models becomes more and more challenging task. It might be event impossible to

derive the model, or the time costs related to the process might get unreasonable. Each

new processor and even a setup using this processor requires a new model to be created.

Another category of methods for WCET analysis is called dynamical analysis. These

methods are based on measuring the execution time on the actual target system. These

methods give also only estimates of the WCET and how tight these estimates are depends

very much on the test vectors used. Only inputs causing the worst-case execution path

1



CHAPTER 1. INTRODUCTION 2

can produce reliable estimates. It is however very difficult, if not impossible, to generate

such testing vectors. There are nevertheless efforts, which aim to provide proof of having

observed the WCET on the measurement level. (Schaefer et al., 2006)

Sometimes it is also uselful to do a timing analysis of an application, for which actual

worst-case execution time is not that crucial, but having typical execution times might

come in handy. This is also the case of the application work described in this thesis. A

method for measurement of execution times on a PowerPC-based embedded target was

developed. The method was then applied to a mobile robot control software.

The structure of the work is as follows.

Chapter 2 gives a brief overview of the software developed for a mobile autonomous

robot, which was built to take part in an European competition of mobile robots called

Eurobot. The structure and architecture of the software is described to lay grounds for

later discussion of the measured timing behavior of the software.

Chapter 3 describes the research that was done in order to figure out possibilites of

precise time measurement on a PowerPC target system with GNU/Linux as an operat-

ing system. This section contains discussion of all the possibilities available and their

advantages and disadvantages.

Chapter 4 describes the actual implementation of measurement method arising from

the results of the research done in previous chapter. All the tricky aspects of time mea-

surement framework implementation on top of an embedded target system are described

here.

Chapter 5 represents a short case-study of possibility of application of the timing

analysis on a source code generated automatically from a simulation schema in MAT-

LAB/Simulink environment. Automatic C code generation from a simulation schema is

an interesting feature offered by the Real-Time Workshop plugin for MATLAB/Simulink,

allowing creation of advanced control algorithms without substantial knowledge of the

C programming language and pitfalls connected with embedded software development.

The timing information acquired thanks to the measurement can then be used to create a

simulation of the timing behavior of an application generated from MATLAB/Simulink.

This section was originaly created as a part of a deliverable (Ž́ıdek et al., 2008) for the

FRESCOR project (Framework for Real-time Embedded Systems based on COntRacts

(FRESCOR project, n.d.)).

The last chapter summarizes results achieved while working on this topic and outlines

possibilities of its further application and development.

The presented thesis is a result of three years of work on the mobile robot project, so
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it is kind of a compilation of the results achieved during this time period.



Chapter 2

Mobile Robot Software

One part of this diploma thesis was to create software to control a mobile autonomous

robot for the Eurobot competition.

There is a team at the Department of Control Engineering at the Faculty of Electrical

Engineering of CTU, which has taken part in the Eurobot competition for past three years.

Eurobot is a competition of mobile autonomous robots that is designed especially for

teams of young people, organised either in student projects or in independent clubs. There

are national rounds of the competition in most european countries each year, of which the

most successful teams can take part in international finals. The competition itself is very

challenging, since its rules are redesigned every year, to give newly participating teams

same status as the ones, which have already taken part in the competition. Nevertheless

the basic concepts of the competition remain the same: matches are organised in rounds

lasting 90 seconds, the maximal allowed dimensions of the robots remain more or less the

same and the playground for the competition has also fixed dimensions.

The software for the robot was developed continuosly during the past three years

by members of the team. Since the beginning we designed the software with its max-

imum reusability on mind. For this reason the software components are organised in

independent layers in a modular manner.

Since the software itself is result of team work, I will present only its basic concepts

in this work. Main focus of the thesis lies in the timing analysis of the software. The

description of the overall design of the software is important in order to understand the

results of the timing analysis presented later in the work.

4



CHAPTER 2. MOBILE ROBOT SOFTWARE 5

2.1 Mobile Robot – Structure of the System

The robot was designed in a highly modular manner, in order to allow a high level of

reusability of all parts of the system, since the robot has to be redesigned each year for

the competition because of changing rules.

Figure 2.1: Robot for Eurobot 2008

A block diagram describing the system can be seen in Fig. 2.2.

The heart of the system is an embedded board with an MPC5200 processor by

Freescale (PowerPC architecture). This board has the function of main control com-

puter. More information on the board can be found further in section 3.1.

The electronics of the robot is divided into submodules (drive control, power supply,

sensors, etc.). All modules together with the main control board are interconnected

by CAN bus. This bus was chosen especially because of its noise immunity and easy

scalability. This bus is widely used in industrial control applications and in automotive

applications.

The main controller intercepts data from the submodules on the CAN bus and issues

control commands back to the submodules. This functionality is serviced by a standalone

application on the controller board. All data are then redirected to the ORTE commu-

nication layer. ORTE is an open-source implementation of real-time publish-subscrib

protocol. More information on ORTE can be found in section 2.2. The greatest ad-
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Figure 2.2: Schematic diagram of the robot

vantage of this architecture is, that the data can be read from the ORTE layer in the

controlling application on the main robot controller, as well as in applications on remote

hosts used for debugging and tuning of the algorithms. This is because the ORTE layer

is based on the Ethernet interface, which can be easily connected to remote hosts using

wireless network adapter.

The robot uses ultrasonic transmitters placed on defined spots around the playground

and an ultrasonic receiver placed on the robot itself to calculate the position of the robot

on the playground. The calculation is based on Kallman filtration and uses a principle

simillar to GPS system. Since the calculation needs a lot of computing power, there is

another MPC5200 based computer dedicated to this task. The results of the calculations

are then sent to the main controller over the CAN bus.



CHAPTER 2. MOBILE ROBOT SOFTWARE 7

2.2 ORTE

ORTE stands for OCERA Real Time Ethernet (Smolik et al., 2004) and it was a part of

OCERA project. ORTE is an open source implementation of RTPS (Real-Time Publish-

Subscribe) communication protocol defined by Real-Time Innovations (RTI). RTPS is

an application layer protocol, which has two main communication modes. One is the

publish-subscribe protocol for transferring the data from publisher to subscribers, and

the other one is Composite State Transfer (CST) protocol, which transfers state. RTPS

protocol was designed to use an unreliable underlying network protocol, such as IP/UDP.

Figure 2.3: Publisher-subscriber model of ORTE communication

The publish-subscribe architecture was designed to simplify data distribution from

one source to many recipients. The publisher does not have to have any knowledge of

the number or location of subscribers. Also, the subscribers simply receive the data

anonymously and thus they don’t need to know any information about the publisher. An

application can be publisher and subscriber at the same time.

The publish-subscribe architecture is best suited for distributed applications. It is

scalable and the data flows can be managed easily regardless of the number of nodes

(publishers and subscribers) connected to the system. When subscribing to a data flow,

the application specifies only the topic of the data it wants to receive, rather than to any

specific publisher.

The publish-subscribe services are typically made available to applications through
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middle-ware, that sits on top of the operating system network interface and presents an

application programming interface.

In our case, we are using ORTE to publish data from an application, which intercepts

data from CAN bus. Then the data are subscribed in the main controlling application

running on the main controller board, but also in a graphical application running on a

standard desktop or portable computer, which we use for visualizing all the data from the

robot. Thus we can see on-line all the sensors readings, information about the position of

the robot etc. The controlling application publishes all the commands for controlling the

motion of the robot to ORTE also, and the data are subscribed in CAN bus communica-

tion application, which transforms them into appropriate CAN messages and sends them

to the motor driver board. This approach makes it possible to control the robot as from

the controlling application as from the graphical application on a separate computer in

the same manner.

2.3 Robot Software Structure

A schematical representation of the structure of the software for the mobile robot can

be seen in Figure 2.4. Boxes represent individual processes, the arrows show data flow

among the processes.

2.3.1 Interface Between CAN-bus and ORTE Layer

As was mentioned earlier, the communication between the main controller of the robot

and its sensoric and actuator submodules is carried out over the CAN-bus. There is a

stand-alone application running on the main controller (denoted as cand in Fig. 2.4),

which receives all the data packets from the CAN bus and then publishes the data to the

ORTE layer. It also subscribes data containing robot control commands, which are pub-

lished on ORTE by the main control application, and transforms them into appropriate

messages to the CAN bus.
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Figure 2.4: Software structure

2.3.2 Robot Control Application

The software controlling the whole system and implementing the actual game strategy

has the form of parallel finite state machines (further refered to as FSM ). One state

machine serves for motion control, one for actuators control and another one control the

game strategy. The communication between the state machines is implemented as events

issued by individual tasks.

The main control application is denoted as robofsm in Figure 2.4. It is interesting

to note, that thanks to the ORTE communication channel used and modular software

archietcture, it is possible to run the control application not only from the main controller

placed on the robot, but also on a host computer connected to the robot through a wireless

Ethernet connection. This is useful especially during the algorithms development phase.

There was a library created containing many C language preprocessor macros, which

eases the use of the FSM framework by hiding the implementation details of the automa-

tons from the programmer writing the robot control application. Sample of the notation
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used to work with the FSM framework is in Listing 2.1

FSM STATE DECL( s t a t e1 ) ;

FSM STATE DECL( s t a t e2 ) ;

FSM STATE( s t a t e1 )

{
switch (FSM EVENT) {

case EV ENTRY:

FSM TIMER(100 ) ;

break ;

case EV TIMER:

some act ion ( ) ;

FSM TRANSITION( s t a t e2 ) ;

break ;

}
}

FSM STATE( s t a t e2 )

{
switch (FSM EVENT) {

case EV ENTRY:

ano the r ac t i on ( ) ;

FSM TIMER(200 ) ;

break ;

case EV TIMER:

FSM SIGNAL(ANOTHER FSM, EV SOME EVENT, ∗ data po in t e r ) ;

break ;

}
}

Listing 2.1: Sample FSM code

As can be seen from the sample code, the code controlling the robot based on inputs

from its sensors and game strategy algorithms really represents an event-driven finite

state machines paradigm. We came out with this architecture, because in our opinion

a robot control algorithms can be well represented in this way, since the control usually

consists of waiting for some input, like a particular sensor value, which represents a state

in the FSM terms. When the expected value appears, a transition to another state occurs.

In this state the robot performs a requested action.
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The FSM architecture introduces a higher level of abstraction, when creating control

algorithms for the robot. The programmer does not have to take of low-level infrastruc-

ture of the code, like timers, inter-process communication and so on, since all these tasks

are solved by the FSM library.

2.3.3 Visualization Application

The fact, that all the data from the sensoric subsystems of the robot are published to the

ORTE layer allowed us to create a graphical application, which can visualize the robot

state information in a convenient graphical representation. This application is denoted as

robomon in Figure 2.4. The application can be run on a remote host computer, connected

to the robot through the Wi-Fi connection.

The application was written in C++ language, using the Qt user interface framework.

A screenshot of the application is in Figure 2.5. The application not only allows us to

see all the sensors readings from the robot, it also shows the position of the robot on the

playground. Moreover, it is possible to fully control the robot using the application.

When developing some algorithms involving movement of the robot on the playground,

it is possible to use this application as a simulation platform. Thus we can tune the

algorithms without using the actual robot and only then perform testing using the real

hardware.

Figure 2.5: Robot visualization application



Chapter 3

Timinig Analysis on GNU/Linux

and MPC5200 Target

This chapter gives a detailed analysis of possibilities of execution time measurements on

a PowerPC based target system with GNU/Linux as an operating system.

Timing analysis is a process, which has to be always tailored for the given application

to be measured. Each target platform has its own specifics, to which the process has to

be adapted.

This thesis deals with measuring execution times on a PowerPC processor-based em-

bedded board, which is running GNU/Linux operating system. The execution time mea-

surement process developed in this work can however be generalized to certain degree to

be used on a different target platform with Linux operating system.
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Figure 3.1: Timing analysis process
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3.1 Target Board

The target board used for practical application during work on this thesis was based on

a processor MPC5200B by Freescale, running at 396 MHz. This processor has 32-bit

PowerPC architecture and can be considered as a widely accepted standard on market

with embedded system nowadays. This is probably caused by its high calculating power,

low power consumption and effective architecture of the processors. The processor module

used for this work can be seen in Figure 3.2. It is a SHARK module from MIDAM Control

System series manufactured by the czech company Mikroklima, s.r.o.

Figure 3.2: Processor module MIDAM Shark

The carrier board had 128 MB of SDRAM memory and 64 MB of Flash memory. As

a bootloader was used U-Boot. Custom GNU/Linux kernel version 2.6.29 (vanilla) was

compiled for the board.

3.2 Execution-Time Profiles

When describing a timing behaviour of an application, it it also necessary to establish

some common way of representing the results of the analysis. Execution-time profiles are

mostly used for this purpose.

Execution-time profiles represent a mean to describe the probability distribution of

different execution times of the code measured. This is usually achieved by taking his-

tograms of execution time observed and dividing those by the overall number of measure-

ments observed, effectively norming the distribution to 1 (Petters, 2007).

The representation of ETPs used in this work has observed execution times on the

X-axis and complementary cumulative probability mass function on the Y-axis. A sample
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of such representation is in Figure 3.3.

This representation provides best visibility of the measured values for visual inspec-

tion. The interpretation of the graph can be as follows: what is the probability, that

the execution time of the function will exceed a given time? On the sample ETP shown

below, we can thus conclude, that the probability of the execution time exceeding 5 μs

is almost one. This means, that almost all the measured execution times exceeded this

value. On the other hand, we can also read from the ETP, that the longest execution

time observed was slightly below 15 μs.

Also note, that a logarithmic scale is used on the Y-axis.
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Figure 3.3: Sample execution-time profile

3.3 Measuring Application Execution Times

Since we are concerned in measurement of execution times of individual functions in

an application, the only way how to accomplish this is to record timestamps together

with unique identifiers on entry and leave points of the measured functions. The data

structure containing a timestamp and an identifier will be called instrumentation point

or ipont in further text. There are several possibilities how to do the actual recording of
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instrumentation points.

3.3.1 On-target buffer

One possibility is to record the timestamps together with identifiers to a buffer directly

on the target system. This would be typically operating memory of the system. This

method does not impose additional requirements on technical equipment necessary to

carry out the measurement. However operating memory is usually limited in embedded

systems, which means that only limited number of timestamps can be recorded.

This approach can be further divided into two possible cases. One possibility is to

extract a single trace at the end of each mesurement. Another option would be to collect

the recorded data periodically in smaller amounts during the measurement on a host

computer.

When collecting the recorded data as a single trace, amount of memory available to

store the data during the measurement constitutes a fixed constraint on the length of the

trace, that can be acquired. This method was chosen for this work.

3.3.2 Direct tracing

More advanced method is direct tracing, which basically means, that the instrumentation

point data are sent out directly by setting an output port of the target system. Data can

then be acquired using a suitable data logger. The data logger must be able to capture

data on high speed and have sufficient storage capacity. Modern fast logical analyzers

can fulfill these requirements.

When collecting a trace using this method, the size of the trace is not limited by

amount of resources on the measured system. Nevertheless it is more demanding because

of the expensive equipment needed to capture the data.

In this case only unique identifiers identifying location in code, from which the in-

strumentation routine has been called, is sent to the output port. The actual time

measurement is done by the external device, using its own clock source. This has also

an advantage in the fact, that the data capturing device can utilize more precise and/or

stable clock source than the one available on the target board.
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3.3.3 Instrumentation code

As was mentioned before, the on-target buffering method was chosen to be used for further

work. This decision brings along the necessity to develop instrumentation function, which

will do the actual timestamping of the code.

There are several considerations that must be taken into account when developing

code for this purpose. The most important one is probably the requirement, that the

timestamping function should be as fast as possible, so that it wouldn’t affect the execu-

tion time of the application to be measured.

Another consideration is the way, in which the measured data are going to be processed

to obtain meaningful results. The data can be processed either by a custom application,

written to fit the measurement needs, or by an industrial-grade tool. This consideration

affects in particular format of the captured trace – in other words the data that has to

be actually recorded to the trace (e.g. unique identifiers or instruction pointer).

Since Linux operating system is used on the target system, there are at least two posi-

bilities available of how to actually obtain the timestamps. One possibility is to create a

custom ipoint function in assembly language for maximum efficiency, another is to exploit

some of the standard library functions to read the system time, like gettimeofday() or

even better clock gettime(). Lets have a closer look at the options now.

The easier of the approaches described above is using standard library functions.

When precise time measurements are considered, the only function usable for this purpose

is clock gettime(). The function gettimeofday() cannot be used, because it does not

provide the required accuracy. The resolution of this function is μs and its purpose is to

give the best guess at wall time and it can eventually go backwards. On the other hand

clock gettime() has nanosecond resolution on recent Linux kernel with high-resolution

timers and the returned time is monotonic.

When writing instrumentation code for time measurement, it is important to identify

a reliable clock source on the target platform. The PowerPC architecture offers the Time

Base (TB) register for this purpose. This is a 64-bit register, which is incremented at a

configurable frequency. The frequency of the timer is usually set by bootloader when an

operating system is used on the target system. This is also true for the target platform

used in this work. The uboot bootloader used on the board sets the update frequency

of the TB register to 33 MHz. Since the register is 64-bit long, its reading on a 32-bit

architecture requires a special approach, which is described later in section 4.1.1.2. This

register is also used as a general clock-source by the Linux kernel.
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The approach using a custom assembly-based function may be more complicated, but

is supposed to return better results in terms of the function execution time. Thus it

should introduce less overhead to the measured application.

An evaluation was done to compare the effectivity of the approaches descibed above.

In this evaluation, execution times of the instrumentation functions written in C using

library functions and written in assembly were compared. To measure the execution time,

the algorithm described in listing 3.1 was used. The execution times of the instrumenta-

tion point function were calculated as differences of timestamps of two adjacent records

in the buffer.

t i m i n g l i b r a r y i n i t i a l i z a t i o n ( ) ; /∗ a l l o c a t e b u f f e r f o r timestamps ∗/

for ( i =0; i <10000; i++) {
/∗ save timestamp and id to b u f f e r ∗/
t im ing in s t rumenta t i on po in t ( 1 ) ;

}

t i m i n g l i b r a r y f i n i s h ( ) ; /∗ p r i n t timestamps from bu f f e r ∗/

Listing 3.1: Measuring instrumentation function execution time

The result of this measurement for instrumentation point based on the function

clock gettime() can be seen in ETP in Figure 3.4. The mean value is (0.929±0.005) μs.

The results of the execution time measurements for the instrumentation point func-

tion hand-written in assembly can be seen in ETP in Figure 3.5. The mean value is

(0.344±0.007) μs.

As expected, the hand-written assembly code demonstrated better performance in

this comparison. The reason for this fact is that in the assembly function, only actions

done are reading of the TB register and storing this value to the buffer together with ID

value. The clock gettime() function, on the other hand, performs another operations

over the TB value read. Also a userspace to kernel mode switch has to be done. Since

the function returns a time value in a structure containing seconds and nanoseconds,

conversion from the raw TB value has to be done. Also all the time values returned by

the function represent a difference to one time-point in past (mostly boot time of the

operating system, but this is not guaranteed on all architectures), an initial value of the
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Figure 3.4: ETP for duration of instrumentation point based on function

clock gettime()
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Figure 3.5: ETP for duration of instrumentation point based on ASM code
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TB register has to be subtracted from the read value. More information on conversion

of the raw TB value to a human-readable time value are presented in section 4.1.1.3.

Another factor introducing further overhead to the function is the fact, that a mutex

locking has to be performed inside the function, in order to guarantee its atomicity.

The instrumentation function written in assembly language does not perform any

transformations of the read TB value. The only actions carried out in the function are

reading of the time base register, saving it to the buffer together with identification mark

and incrementing the buffer pointer. The transformations of the time values is done only

after finish of the measurement, when the measured data are printed to the screen or to

a file. Detailed description of the implementation of the assembly function is given in

section 4.1.1.2.

3.4 Task Switch Tracing

3.4.1 Significance of Task Switch Tracing

Since the application to be measured is running in a multitasking environment (the

operating system), its execution may be preempted in favor of another process, depending

on the scheduling policy used by the operating system. Context switches must be taken

into account when performing timing analysis on a multitasking system, since context

switch can occur during execution of a measured function. This scenarion is ilustrated in

Figure 3.6. The measured process (P1) starts its execution in time 0 and its duration is

7 cycles. However, at cycle 4 it gets preempted by another process (P2), which runs for

3 cycles. The first process is scheduled again and finishes its execution at cycle 10. Thus

the measured execution time of the process is 10 cycles, although its real execution time

is only 7 cycles.

When measuring execution time, we are usually interested in the actual time a par-

ticular function was executing, so time that was spent executing other tasks has to be

subtracted from the measurement.
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Figure 3.6: Impact of context switch on execution time measurement

3.4.2 Possibilities of Task Switch Tracing on Linux

Task switch tracing in a multitasking environment basically means saving a timestamp

whenever the task under measurement is preempted by another task in a multitasking

environment. Operating systems have a scheduling function, which takes care about

scheduling active tasks in the system.

Scheduling function of the Linux operating system can be found in the source code

file kernel/sched.c, it is called schedule(). A hook has to be added to this function

in order to record timestamp everytime a task-switch happens, together with identifiers

of the task, between which is being switched.

There are several approaches possible to solve this problem. The most obvious one is

to create a custom timestamping function and add a call to it to the scheduler function.

This approach is however also the most laborous one, because modifying core function of

the operating system kernel has to be carried out with extreme caution.

Another possibility is to exploit some of the tracing functions that are already included

in the Linux kernel. Recent version of the kernel includes so called Function Tracer -

ftrace. The ftrace serves not only for tracing kernel function, as the name suggests, but it

also contains infrastructure that allows for other types of tracing. Among others a tracer

allowing context switch tracing is included.
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Very interesting feature offered by the function tracer is dynamic ftrace. When this op-

tion is enabled in the kernel configuration, the system will run with virtually no overhead

when function tracing is disabled. The actual tracing code is replaced by nop instructions

on system start-up. When tracing is enabled the nops are patched back to calls.

The ftrace functionality does not require any special user-space tools. Special filesys-

tem, called debugfs, is used to control the tracer and to obtain the recorded trace from

the kernel.

3.4.2.1 Basic usage of ftrace

Once Linux kernel has been compiled with support for ftrace, the debugfs file system can

be mounted using following command:

mount -t debugfs nodev /mount point

The mount-point is usually /debug or /sys/kernel/debug. We will use /debug

further on for simplicity.

List of tracers available can be retrieved by calling:

cat /debug/tracing/available tracers

The output should look similar to the following one:

~$ cat /debug/tracing/available tracers

function sched switch nop

The sched switch tracer should be present in the listing. If it is not, check that the

kernel has been compiled with configuration option CONFIG CONTEXT SWITCH TRACER=y

set.

The tracing process can be controlled using files /debug/tracing/current tracer

and /debug/tracing/tracing enabled. Tracing of context switches can be turned on

using following commands:

echo sched switch > /debug/tracing/current tracer

echo 1 > /debug/tracing/tracing enabled
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To stop the tracing, simply issue:

echo 0 > /debug/tracing/tracing enabled

The recorded trace can printed in the terminal by calling:

cat /debug/tracing/trace

The resulting trace has following format illustrated in the following example.

tracer: sched_switch

TASK-PID CPU# TIMESTAMP FUNCTION

| | | | |

bash-3997 [01] 240.132281: 3997:120:R + 4055:120:R

bash-3997 [01] 240.132284: 3997:120:R ==> 4055:120:R

sleep-4055 [01] 240.132371: 4055:120:S ==> 3997:120:R

bash-3997 [01] 240.132454: 3997:120:R + 4055:120:S

bash-3997 [01] 240.132457: 3997:120:R ==> 4055:120:R

sleep-4055 [01] 240.132460: 4055:120:D ==> 3997:120:R

[...]

The first column of the trace contains the name and PID of the task running, when

the record has been made. The following column contains identifier of the CPU the task

was running on (this information is meaningful only on SMP systems).

Timestamp of the event is shown in the third column of the trace. The function tracer

uses ring buffer to record the events. Each record in the ring buffer has a timestamp,

which is obtained by calling the function sched clock() from the linux kernel. This

function is used as a high-resolution time source by the linux scheduler. It is important

to note at this point, that the sched clock() function uses the Time Base (TB) register

as the clock source.

The last three columns contain information about the tasks it’s being switched be-

tween. The first of these columns indicates the task running when the context switch

happened, the last column indicated the task to which the scheduler switched. The signs
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between these two columns indicate, whether a context switch (’==>’) or a wake-up (’+’)

of the task happened. The information about the current and next task have the following

format: PID:KERNEL-PRIO:STATE.

PID is the process identifier of a task. It’s important to realize, that in Linux threads

are actually treated as child processes on the kernel level, thus each thread has its own

unique PID.

The kernel priority shown in the log is the inverse of the actual priority with zero (0)

being the highest priority.

Possible task states are:

R - running : wants to run, may not actually be running

S - sleep : process is waiting to be woken up (handles signals)

D - disk sleep (uninterruptible sleep) : process must be woken up

(ignores signals)

T - stopped : process suspended

t - traced : process is being traced (with something like gdb)

Z - zombie : process waiting to be cleaned up

X - unknown

Task states running and sleep are mostly to be encountered when actually perform-

ing a measurement.

The ftrace tracer offers some more configuration options available through the debugfs

file system. Of these only one of concern when performing the measurements described

in this work is the one for configuration of the ring buffer used to record the events. The

ring buffer must be set to be large enough to hold the complete trace since the beginning

of a measurement. If the end of the buffer is reached in course of tracing, the records

at the beginning of the buffer get overwritten by new ones. The size of the ring buffer

can be controled through the file /debug/tracing/buffer size kb. Desired size of the

buffer in kilobytes can be written to this file. The memory for the buffer is statically

allocated.

Required size of memory for the ring buffer of the tracer depends on the measured

application (how often it causes context switches) and other applications running on the

system, as well as on the duration of the measurement.
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3.5 RapiTime

There are some industrial-grade tools available in the market. These tools are usually

designed for full featured WCET analysis. An example of such tool can be RapiTime

by Rapita Systems Ltd. RapiTime was evaluated to be used for evaluation of the data

measured in this work, thanks to courtesy of Rapita Systems Ltd.

This tool-suite offers complete WCET analysis of embedded code, combining both

static and dynamic analysis. It consists of several applications, covering all steps

RapiTime consists of several tools, which are used in the process of timing analysis.

First a tool called cins is used for instrumentation of the code to be measured. The

instrumentation is done in an automatic manner and the tool offers fine-grained control

over the required level of details of measurement. Based on configuration provided by

annotations placed to the source code, cins places instrumentation points automatically

to preprocessed sources. Apart from that, cins also prepares information on structure

of the code used in another step of the analysis. The source code is then built and linked

with library containing the instrumentation code.

Once the data on structure of the code is ready, structural analysis is done by another

application in the chain, xstutils.

The compiled executable is then run on the target system and a time trace is collected.

The measured data can then be transformed into desired form using traceutils utility.

This tool can also merge more trace files into one resulting trace.

The final step is to generate a report using traceparser. The report can then be

viewed in RapiTime Viewer, which is a plugin for the Eclipse platform. The report

contains detailed information on the timing behavior of the application, resulting from

both structural analysis of the code and actual measured values. The timing data are

directly realted to individual functions and their contribution to the total WCET is

indicated. This helps to identify bottlenecks in performance of the measured code.

More information about RapiTime can be found for example in (Rapita Systems

Limited, n.d.).

Although RapiTime is very professional tool offering many possibilites and data in

terms of timing behavior of an application, it was not possible to use it for the work in the

end. So far the tool has never been used to analyse an application on top of a full-blown

operating system, like GNU/Linux. However it was possible to make it analyse some

simple sample applications. The trouble nevertheless is, that the source code parser and

structural analysis tool are not ready to work with source code, part of which has been
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Figure 3.7: RapiTime workflow

written in C++. The tools are designed for analysis of C source codes, since C language is

still a widely accepted standard in embedded applications development, especially because

of its effectivity on systems with limited resources. After research done by engineers at

Rapita Systems it was found out, that adding support for C++ code to their tools would

be very complicated, if not impossible. Since part of the robotic software that was to be

analysed in this work was written in C++, it was not possible to use RapiTime for the

analysis and another approach had to be taken.



Chapter 4

Implementation and measurement

results

This chapter demostrates how the measurement methods developed as a part of this work

and described in previous sections can be applied to a real-world application. Selected

parts of the software for the mobile robot described in chapter 2 were analysed.

4.1 Timing Analysis Library

A software library was created as a result of research on posibilities of timing analysis

on the given target system. The library contains functions for recording of timestamp

for both userspace applications and kernel task switches. The timestamps can be printed

either on screen or to a file for later analysis using scripts developed as a part of the

library.

The library is configurable during compile-time. It uses OMK make system (OCERA,

OMK, n.d.) to manage the build process, so it is fully compatible with the robotic

software being analysed.

The API functions visible to the applications linked with the library is listed in Listing

4.1.

26
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4.1.1 Library configuration and interface

The library is fully configurable using compile-time options specified in Makefiles. Follows

a description of the library application interface. Each function is accompanied by a list

of configuration parameters it is affected by.

t im i n g i n i t (void ) ;

t im ing i po i n t ( u i n t 16 t id ) ;

t im i ng s e t p i d ( u i n t 16 t id , p i d t pid ) ;

t im ing output t r a c e (void ) ;

t im i n g f i n i s h (void ) ;

Listing 4.1: Timing analysis library API

4.1.1.1 Function timing init()

This function shall initialize the timestamping functionality in both userspace and kernel

(task switch tracing). For the userspace applications tracing, a propper instrumentation

point type is set based on the configuration given at compile time. Available ipoint types

are listed in table 4.1.

The task-switch tracing is also turned on at this point. First the debugfs filesystem

is mounted. Then the tracer sched switch is set as the current tracer and finally the

tracing is turned on.

4.1.1.2 Function timing ipoint()

This is the core function of the timing analysis library. It performs the actual timestamp-

ing of the point in an application, where it is called from. As was already described in

section 3.3.3, two ways of writing the instrumentation code were tested and evaluated.

Although the assembly hand-written code showed better performance and was selected

as the main method for recording of timestamps during real measurements, the C code

based on the function clock gettime() was left in the library for comparison and ref-

erence purposes. User can select, which of the two versions of the instrumentation code

will be actually used by the library using build-time configuration parameters listed in

the Table 4.1.

Lets have a more detailed look on the actual implementation of the instrumentation

code in both versions, as it has some specifics, which should not be missed when designing
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Table 4.1: Configuration parameters specifying version of the instrumen-

tation point code

Configuration parameter Effect

CONFIG TIMING IPOINT ASM the hand-written ASM function is used as the

instrumentation point

CONFIG TIMING IPOINT CLOCK GETTIME the function clock gettime() is used to ob-

tain the timestamps

a function for this purpose.

The version using standard library functions and written completely in C language

shall be presented first, as it is easier to understand and follows basically the same

principles like the assembly version. The code is presented in Listing 4.2.

1 stat ic i n l i n e void t im i n g i p o i n t c l o c k g e t t ime ( u in t 16 t id )

2 {
3 t imestamp t ∗p ;

4

5 i f ( ! t imestamp enabled )

6 return ;

7

8 pthread mutex lock(&mtx ) ;

9 p = timestamp ptr ;

10 t imestamp ptr++;

11 pthread mutex unlock(&mtx ) ;

12

13 i f (p >= timestamp buf f end ) {
14 p = timestamp handle over f low ( ) ;

15 i f ( ! p ) {
16 return ;

17 }
18 }
19 p−>id = id ;

20 c l o ck g e t t ime (CLOCK RT, &(p−>t s ) ) ;

21 }

Listing 4.2: Ipoint function using clock gettime()

There are several things to be pointed out about the implementation. There is a global
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array of type timestamp t in the library, which functions as the buffer to store measured

timestamps. Another global variable, timestamp t *timestamp ptr, is used as an index

to the buffer. In the instrumentation function, the address stored in the index variable

is first copied to a local variable and the index is incremented immediately. These two

actions are done inside a section guarded by a mutex. This construct is used to prevent

corruption of the recorded data that could result from concurrent access to the buffer

from two points in the measured application – in other words, this construct secures

the reentrancy of the instrumentation point function. Since the index is copied to a

local variable and incremented, even in case of context switch happening in the middle

of execution of the instrumentation function, a valid pointer to the timestamps array is

retained after switching back to the original task. If another task calls the instrumentation

code during the context switch, already incremented index to the array will be used in

this task.

1 stat ic i n l i n e void t im ing ipo in t a sm ( u in t 16 t id )

2 {
3 t imestamp t ∗p , ∗pinc ;

4 u in t 32 t tbu , tb , tbu2 ;

5

6 i f ( ! t imestamp enabled )

7 return ;

8 /∗ Store current TB ∗/
9 asm volat i le (

10 ” 1 :\n”

11 ” mftbu %0\n”

12 ” mftb %1\n”

13 ” mftbu %2\n”

14 ” cmpw 0,%0,%2\n”

15 ” bne− 1b\n”

16 : ”=r ” ( tbu ) , ”=r ” ( tb ) , ”=r ” ( tbu2 ) /∗ Outputs ∗/
17 : /∗ No inpu t s ∗/
18 : ” cr0 ” ) ; /∗ CR0 changes ∗/
19

20 asm volat i le (

21 ” 1 : lwarx %0,0,%4\n”

22 ” addi %1,%0,%3\n”

23 ” stwcx . %1,0,%4\n”

24 ” bne− 1b\n”

25 : ”=&b” (p ) , ”=&b” ( pinc ) , ”=m” ( timestamp ptr )
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26 : ”n” ( s izeof ( t imestamp t ) ) , ”b” (&timestamp ptr )

27 : ” cr0 ” ) ;

28

29 i f (p >= timestamp buf f end ) {
30 p = timestamp handle over f low ( ) ;

31 i f ( ! p )

32 return ;

33 }
34

35 p−>id = id ;

36 p−>tbu = tbu ;

37 p−>t b l = tb ;

38 }

Listing 4.3: Ipoint function handwritten in assembly

The assembly code has basically the same structure, as the code written in C presented

earlier in this section. The first block of assembly code (lines 9 - 18) serves for reading

of the TB register. Since the register is 64-bit long, it can’t be read in one instruction

on a 32-bit architecture. The register actually consists of two 32-bit registers: TBU and

TBL, which contain the upper, respectively the lower half of the 64-bit value. On line 11,

the TBU register is read, on line 12 the TBL is read. Because of possibility of a carry

from TBL to TBU occuring between reads of the TBU and TBL, the integrity of the

read value has to be guaranteed. For this reason, the TBU value is read once more and

compared with the one stored in the first reading. If the values don’t match, the whole

procedure is repeated.

The second block of assembly code (starting at line 20) does atomic incrementation

of the pointer to the next free position in the buffer. The pair of PowerPC instructions

lwarx / stwcx is used to emulate read-modify-write operation to specified memory lo-

cation. If the store is performed, the use of the lwarx and stwcx instructions ensures

that no other processor or mechanism has modified the target memory location between

the time the lwarx instruction is executed and the time the stwcx instruction completes.

This is a analogous to the mutex mechanism used in the previously described function.

Both implementations of the instrumentation function have the same mechanism to

prevent overflow of the buffer, where the timestamps are stored. If the index to the

buffer points outside of the buffer after it is incremented, no write operation is further

performed to the memory and a flag indicating buffer overrun (timestamp enabled) is

set.
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4.1.1.3 Function timing output trace()

When this function is called, the collected trace data are either printed to the terminal,

or saved to a text file.

Since the timestamps recorded from the measured application are represented by a raw

timebase register value and the timestamps printed by the ftrace context switch tracer

are floating point time values with microseconds resolution, it is necessary to convert the

TB values to the same format first. Otherwise further processing of the traces would not

be possible.

For this reason, all the operations the Linux kernel does with the TB value before it

is presented as the ftrace output had to be researched from the kernel source code files,

because the Linux kernel does not provide any documentation on this issue.

As was mentioned before in the section describing the ftrace operation (3.4.2.1), the

source of the time information for ftrace is the kernel scheduler clock function sched clock().

Lets have a look how this function works with the information read from the time-

base register. The implementation of the function can be found in kernel sources in file

arch/powerpc/kernel/time.c and is listed in Listing 4.4.

/∗
∗ Schedu ler c l o c k − re turns current time in nanosec un i t s .

∗
∗ Note : mulhdu (a , b ) ( mu l t i p l y h igh doub le unsigned ) re turns

∗ the h igh 64 b i t s o f a ∗ b , i . e . ( a ∗ b ) >> 64 , where a and b

∗ are 64− b i t unsigned numbers .

∗/
unsigned long long s ched c l o ck (void )

{
i f ( USE RTC ( ) )

return g e t r t c ( ) ;

return mulhdu ( ge t tb ( ) − boot tb , t b t o n s s c a l e ) << t b t o n s s h i f t ;

}

Listing 4.4: Linux scheduler clock function

The function get tb() reads the raw value of both parts of the TB register and returns

the resulting 64-bit value. Then the value boot tb is subtracted. This value is stored by

the Linux kernel during system boot phase, in function time init(). It represents the

TB register value at system start. The resulting value after subtraction is multiplied by
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the timebase scale factor tb to ns scale. This factor is found out by the kernel during

time subsystem initialization and it reflects the frequency, on which the TB register is

updated.

The function mulhdu(), which does the actual multiplication, is implemented as an

assembly stub in the kernel header files and is not accessible form the userspace. Since

there is no straightforward way of multiplication of two 64-bit integers on a 32-bit archi-

tecture, a function emulating the calculation had to be written in C. It is listed in Listing

4.5.

u in t 64 t mulhdu ( u in t 64 t a , u i n t 64 t b)

{
u in t 64 t ret , ah , al , bh , bl , carry , c1 , c2 , c3 ;

ah = a>>32;

a l = a & 0 x f f f f f f f f ;

bh = b>>32;

b l = b & 0 x f f f f f f f f ;

c1 = a l ∗ bl ;

c2 = ( ah∗ bl )<<32;

c3 = ( a l ∗bh)<<32;

car ry = 0 ;

i f (˜ c1 < c2 ) car ry++;

c1 += c2 ;

i f (˜ c1 < c3 ) car ry++;

r e t = ah∗bh + (ah∗bl >>32) + ( a l ∗bh>>32) + carry ;

return r e t ;

}

Listing 4.5: Implementation of mulhdu function on a 32-bit architecture

The result of the multiplication is then shifted to get time value in nanoseconds.

The timing library has to find out values of the constants used by the sched clock()

function in order to be able to reproduce the calculations done by the function. The value

boot tb is unique each time a system is started. Since the Linux kernel does not provide

any method of reading this value from userspace, a patch had to be created making the
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kernel function time init() print this value during system boot phase. The value can

then be read by the timing library from the system log printed using the dmesg command

from the Linux shell.

The values tb to ns scale and tb to ns shift are constant for a given target sys-

tem. These values are printed to the system log by the kernel and thus can be also read

using the dmesg command.

Now that we have scheduler clock value calculated from the TB value, we have to

convert it to the representation used by the ftrace tracer, when printing the context

switch trace. As was already said, the tracer prints the timestamp as a floating point

value in seconds, with microseconds resolution. The details on how ftrace solves this task

can be found in kernel source file kernel/trace/trace.c in implementation of function

print trace fmt(). The scheduler clock timestamp value is divided by 1000000 to get

the number of seconds and the remainder of the division is used as the microseconds part

of the final time value.

All the operations described in this section are performed on the TB values recorded

during the measurement for the measured application in userspace. The resulting trace

is then printed to a terminal or to a file, depending on the configuration of the library

specified at compile time.

4.1.1.4 Function timing setpid()

When this function is called before beginning of the measurement, the PID supplied to

it as an argument will be printed in the resulting trace, to enable distinction between

timestamps recorded from distinct threads.

4.1.1.5 Function timing finish()

When this function is called, the tracing process is ended. The kernel context switch

tracer is stopped and the instrumentation function is replaced by a function printing

warning to the screen, if an instrumentation point is called after this function has been

invoked. This function should be called the exit point of the measured application, before

the timing output trace() function is called.
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4.2 Processing of the measured values

To process the traces resulting from the measurements done with the timing library, a

set of scripts mostly in awk language was created. Now follows a brief description of the

data processing procedure.

As a result of time measurement using the described library, two data files (if the

output of the library was configured so) are created in the working directory of the

measured program. One of these files contains the trace collected from the application,

while the other one contains the output from the ftrace context switch tracer.

First step is to transform the ftrace output to the same format, that is used by the

application tracer. Once this is done, the two traces are merged and the records are

sorted according to timestamps.

When the sorted trace of the whole system is available, the actual execution times of

the measured blocks of code are calculated. Possible task switched are taken into account

when calculating the total execution time. The time that was spent executing different

task, than the one being measured, is subtracted from the execution time.

Another step is to produce a file containing only the execution times measured. This

file is then used as an input to a script written in MATLAB, which produces the resulting

ETP from the data.

4.3 Measurement Results

This section contains the actual measured execution-time profiles of selected functions

from the robot control software.

The selected functions are the ones, that are supposed to consume a large portion of

the total execution time of the whole application. Also since the functions are directly

involved in controlling the movement of the robot, they have quite stringent requirements

regarding the timing behaviour.

Apart from the motion control functions, measurements of delays on ORTE layer were

carried out.
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4.3.1 Motion Control

The results presented in this section were acquired from approximately 10 seconds long

traces.

4.3.1.1 Function do control()

This function is running in the motion control thread of the FSM control application. It

is responsible for setting the trajectory of the robot movement while avoiding obsatcles,

which might be present in the area in front of the robot.

The measured execution-time profile of the function is in Figure 4.1. The mean value

of the measured execution time of the function was (278.078±2.046)μs (the value is

represented as mean value±standard devation).

�

	
�

�

��
��
��
�

��
��

��
���
��

���������
���
����
� ��� ��� ��� ��� ��� �����	�

��	�

��	�

���

Figure 4.1: ETP of function do control()

4.3.1.2 Function do estimation()

This function calculates the estimation of the robot position on the playground from

the data from the ultrasound system and from encoders on the wheels (odometry).

The calculation is based on 8thorder Kalman filtration. The measured mean value was

(671.478±3.183)μs.
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Figure 4.2: ETP of function do estimation()

4.3.2 Function new goal()

The function new goal() calculates and simplifies a path to goal position avoiding ob-

stacles. The measured mean execution time was (2.244±0.940)ms.

4.3.3 Delay Introduced by ORTE

We found it also interesting to measure delays between a data packet reception on the

CAN bus by cand application (see section 2.3.1) and the time it is actually received by

an application from the ORTE layer (see section 2.2).

Since each message transmitted over ORTE contains timestamps saying when it was

issued by a publisher and when it was received by a subscriber, it was not necessary to

use the timing library for this measurement.

The results of the measurement are presented as an ETP in Figure 4.4. The mean

value of delay measured was (1.458±0.01)ms.

During analysis of the results of this measurement, there was found no correlation

between the length of the data message transfered throught the ORTE layer and the

measured delay.
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Figure 4.3: ETP of function new goal()
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Figure 4.4: ETP of delays introduced by ORTE layer



Chapter 5

Matlab Generated Code Analysis

This section describes work done as a part of deliverable (Ž́ıdek et al., 2008) for the

FRESCOR project (FRESCOR project, n.d.). The section is included because it is

related to the timing analysis problems and might of interest to people involved in the

issue.

5.1 Motivation

Matlab Simulink allows engineers to develop a control application algorithm in high level

graphical language of data-flow diagrams. It contains a tool called Real Time Workshop

(RTW) which can be then used to automatically generate C code of the Simulink dia-

grams. Together with development tools for the target platform this tool set provides a

basis for rapid application development (RAD).

Automatically generated code allows a seamless development process where a non-

programmer (e.g. control engineer) or a team designs and implements the entire system.

Therefore the designer focuses on the controlled object from the beginning to the end of

the development and the implementation issues such as the drivers, the programming lan-

guage, the scheduling policy and the other nonfunctional aspects remain in background.

All the implementation issues are covered by the code generator target developed by the

hardware and real-time specialists as a support for the control engineers work (Bartosinski

et al., 2007).

The quality of the generated code is comparable to the hand-written code, it is read-

able, the development time is shorter and possible error sources are reduced. The C code

38
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for a rapid prototyping is generated by the tool Real-Time Workshop (The MathWorks,

Inc., n.d.). The add-on RTW Embedded Coder (The MathWorks, Inc., 2005) can be

used for the highly optimized production quality code. The targets for RTW and RTW

Embedded Coder differ.

The rapid application development approach does not bring only the automatic code

generation. It is a model based development method supported by a tool chain covering

entire “V” model development chain. The validation of each development phase is done

by the simulation in the Matlab Simulink. First “Model in the Loop” validates the model

of the controller. After the code generation, the “Processor in the Loop” simulation can

be used to validate the real-time execution of the controller on the target hardware in the

loop with the plant model in Simulink. Then the “Hardware in the Loop” simulation can

be used to validate the entire control unit. All these phases can be supported by Simulink

and the corresponding code generator target. The results of each experiment are used to

continuous improvement of the Simulink model. Therefore the model is still synchronized

with the code and can also act as documentation. Contrary to the hand-written code,

there is no gap between the model and the implementation.

For proper execution of the automatically generated application it is necessary to

ensure there is enough resources for the application to meet its deadlines determined by

Simulink model’s sampling rate.

This case study was carried out using the RapiTime WCET analysis tool (see 3.5).

5.2 Introduction

Hardware-In-the-Loop (HIL) simulation is one of the testing methods used while designing

control systems. It is based on simulation of the system to be controlled. This is realized

by computer running the mathematical model of the system. Sensors and actuators

similar to the real system are used and connected to the computer so that the control

system can be employed in the same way as in the real system.

We have taken a real airplane model which was used for testing of aircraft control

systems. Part of this model is used in this case study. It is a transfer function between

rudder deflection (radians) and aircraft yaw rate (radians per second). This model is

used for testing of the aircraft side vibration dumper. It is 5thorder linear time invariant

(LTI) discrete system with single input and output (SISO) sampled by 40 ms period. The
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Simulink model used for the case study can be seen in Figure 5.1. The output of the

system with rectangular pulses on input is in Figure 5.2.

Figure 5.1: The Matlab/Simulink model used for the case study

To generate source code from the model in Simulink, Real-Time Workshop (The

MathWorks, Inc., n.d.), a product from The MathWorks company, was used. Real-Time

Workshop generates stand-alone C code for developing and testing algorithms modeled in

Simulink and Embedded MATLAB code. This allows even users without any deep knowl-

edge of real-time programming aspects to create various kinds of applications. Having

some means of checking a solution timing behaviour would be beneficial for users and

would allow them to compare timing behaviour of different implementations of the same

algorithm.

Each Simulink block is associated with a code template in TLC format (Target Lan-

guage Compiler). Each block template implements a standard interface, making it pos-

sible to integrate blocks in an automated code generation process. Another part used

for the final application generation is the template containing the main() function of

the application, called system target file. This file always has to be customized for the

target CPU architecture and operating system. We use a target created for GNU/Linux

PowerPC systems.

Since Matlab/Simulink models are, by their very nature, strictly periodic tasks with

deadlines equal to their periods they are easy to model.

5.3 Code analysis

After exploring the set of source code generated from the Matlab/Simulink model, it

was observed that the most important files are model.c and linux grt target main.c.

These files provides the API illustrated in Figure 5.3.
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Figure 5.2: Output of the Matlab/Simulink model used for the case study

The main() function initializes the whole simulation and then a timer is set to call

the rt OneStep() function with period given by the model sampling rate specified in

the Simulink model. In the rt OneStep() function update of internal model state is

performed by calling the appropriate functions from model.c file.

When an automatic generation of source code comes into play, the main concern is

always the structure and readability of the resultant code. In case of RealTime Workshop,

the quality of the resultant code can be considered to be quite high, because the code

structure is logical and can be understood by a reader.

The update function contains all the necessary calculations in each step and the model

state is updated with the results. The function comprises of code snippets associated

with function blocks placed in the Simulink diagram. As was mentioned before, the code

snippets are specified in templates for each block using the TLC language. This makes
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Figure 5.3: Interface of source files generated from Matlab/Simulink

model
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the creation of a timing model quite straightforward and painless process and will be

demonstrated on the example described at the beginning of this chapter. The description

is very brief as it does not deviate from the procedure described with the first case study.

First it is necessary to instrument the generated code with RapiTime after prepro-

cessing them with standard compiler preprocessor. The instrumentation points can be

placed to the MdlUpdate() function in model.c, because this function contains the actual

calculations done in each step. It is also possible to instrument the rt OneStep() to see,

if the whole model updates at the desired (sampling) rate. file. Then the application

is compiled and run on the target system. Once the timestamps are acquired and com-

bined with information about task-switch times, RapiTime can be used to obtain the

information about code execution times.
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Conclusions

The thesis described software for mobile autonomous robots, developed and used for the

Eurobot robotic contest by members of the team CTU Dragons (CTU Dragons, n.d.) at

the Department of Control Engineering, FEE, CTU in Prague.

Main focus of the work described in previous chapters was on timing analysis of

software running on an embedded target board with GNU/Linux operating system. A

method for precise time measurement on a system running on a microprocessor with

PowerPC architecture was developed and implemented. The method consists of tracing

execution times of individual functions of an application and tracing context switches

between running tasks in a multi-tasking operating system. The measured timestamps

from the application and context switch times are then combined together and execution

times are calculated. The results are presented in form of exectution-time profiles. The

results of the measurement show, that highest influence on the delays in the system has

the ORTE communication layer.

The method for application execution time tracing established in this work can be

used without modifications on any embedded system running on a PowerPC processor

and using GNU/Linux operating system. All aspects of developing of such method were

described in detail in the thesis, so its application on a different target system can be

derived from the information presented hereinbefore.

A case study was carried out, exploring the possibilities of timing analysis and simula-

tion of timing behavior of an application generated automatically from MATLAB/Simulink

model.

The timing analysis library will be used at the Department of Control Engineering

for further development of mobile robot control algorithms.

The VirtualTime models of the software were not described in the thesis. The pos-
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sibility of modeling timing behavior of software using VirtualTime simulation tool from

Rapita Systems Ltd. was evaluated in a report for project FRESCOR (Ž́ıdek et al., 2008),

but the result of the evalution was, that it is not possible to create a reasonable model

of such a complex system, as a mobile robot control software.
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Appendix A

Content of the enclosed CD

The CD enclosed to this work contains the complete source codes of the timing library

described in the work, including scripts used to process the measured values. The source

code of the analysed portion of the robot control software is also included. Complete

source codes of the robot control software are not publicly available, but they can be

requested from Ing. Michal Sojka (sojkam1@fel.cvut.cz), manager of the project.

Text of the thesis is also included in PDF format (zidek 2009.pdf).
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