
Bachelor Thesis

Low-level software for automotive electronic
control units

Leoš Mikulka

May 2013

Supervisor: Ing. Michal Sojka, Ph.D.

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Acknowledgement
Let me thank my supervisor Ing. Michal Sojka, Ph.D. for his professional guidance and
much useful suggestions during the course of this work.

Furthermore, I would like to thank to other people from Real-Time Systems group at
Department of Control Engineering for their helpful hints.

Besides, I would like to send my last thanks to all other who contributed with even a
little piece of advice and supported me through all the time.

Declaration

iv

Abstract
Tato bakalářská práce se zabývá vývojem nízkoúrovňového softwaru podle standardu
AUTOSAR pod platformou Arctic Core. V dokumentu je v krátkosti popsána softwarová
architektura a metodologie standardu AUTOSAR. Kromě platformy Artic Core jsou také
popsány komerční pluginy sloužící ke generování zdrojového kódu of firmy ArcCore. Dále
jsou vysvětleny základní moduly nízkoúrovňového softwaru, které byly použity při vývoji
ukázkových úloh, stejně jako sekvence volaných funkcí těchto modulů sloužící ke správné
funkčnosti. Vyvinuty byly dvě ukázkové aplikace: blikání LED diodou a komunikace přes
sběrnici CAN.

Klíčová slova
AUTOSAR; řídící jednotky; nízkoúrovňový software; open-source

v

Abstract
This bachelor thesis deals with the development of low-level software according to the
AUTOSAR standard using the Arctic Core platform. The software architecture and
methodology of the AUTOSAR is described in this document. Besides the Arctic Core
platform, commercial plugins used for generating the source code are shortly described.
Furthermore, the basic software modules which were used during the development of
demo applications are explained, as well as the sequence of calling functions of these
modules used for proper functionality. Two applications have been developed: LED
blinker and CAN communication.

Keywords
AUTOSAR; electronic control units; low level software; open-source

vi

Contents

1 Introduction 1

2 AUTOSAR 3
2.0.1 Why AUTOSAR? . 3
2.0.2 Foundation . 3
2.0.3 Goals and Plans . 3

2.0.3.1 Future Plans . 4
2.1 Software Architecture . 5

2.1.1 Virtual Function Bus . 5
2.1.2 Basic Software . 6
2.1.3 Run-Time Environment . 7
2.1.4 Application Software . 7

2.1.4.1 Sensor/Actuator Software Components 7
2.1.4.2 Application (composite) software components 8

2.2 Methodology . 8

3 Used AUTOSAR BSW Modules 10
3.1 System Services . 10

3.1.1 ECU State Manager . 10
3.1.1.1 STARTUP State . 11
3.1.1.2 RUN State . 12
3.1.1.3 SHUTDOWN State . 12
3.1.1.4 WAKEUP State . 13

3.2 Microcontroller Drivers . 13
3.2.1 MCU Driver . 14

3.3 Port Driver . 14
3.3.1 Configuration of the MCU port/port pins 15

3.4 I/O Hardware Abstraction . 15
3.5 DIO Driver . 17

3.5.1 Read & Write Services . 17
3.5.1.1 Dio_ReadPort . 17
3.5.1.2 Dio_WritePort . 17
3.5.1.3 Dio_ReadChannel . 17
3.5.1.4 Dio_WriteChannel . 18

3.5.2 Configuration of the DIO driver . 18
3.6 Relationship between PORT Driver and DIO Driver 18
3.7 CAN Communication – Layered Architecture Flow 19

3.7.1 Signal . 20
3.7.2 SDU . 21
3.7.3 PCI . 21
3.7.4 PDU . 21

vii

3.7.5 PDU & SDU Naming Conventions 21
3.8 COM Module . 22
3.9 PDU Router . 23
3.10 CAN Interface . 25

3.10.1 Initialization sequence . 26
3.10.2 Hardware Object Handles (HOH) 26
3.10.3 Transmit request sequence . 26
3.10.4 Reception indication sequence . 27

3.11 CAN Driver . 27

4 ArcCore 29
4.1 Software Implementation in General . 29
4.2 Open Source Licensed Products . 29

4.2.1 Source Tree Examples . 30
4.3 Commercial Plugins . 31

4.3.1 SWC Builder . 31
4.3.2 Extract Builder . 31
4.3.3 BSW Builder . 32
4.3.4 RTE Builder . 33

5 Demo Applications 34
5.1 LED Blinker – HDK . 34

5.1.1 Configuration of Port Driver . 34
5.1.2 Pin Multiplexing . 35
5.1.3 Configuration of DIO Driver . 35
5.1.4 Changes for the RPP Board . 35
5.1.5 Calling sequence . 36

5.2 CAN Communication – HDK, RPP . 37
5.2.1 Configuration of Port Driver . 37
5.2.2 Configuration of COM . 38
5.2.3 Configuration of PDU Router . 39
5.2.4 Configuration of CAN Interface . 40
5.2.5 Configuration of CAN Driver . 40

5.3 Calling sequence . 40
5.3.1 Transmission . 40
5.3.2 Reception . 41

6 Conclusion 42

Appendices

A Content of the Attached CD 44

Bibliography 45

viii

List of Figures

1 TMS570LS3137 HDK [1] . 2
2 RPP Board [1] . 2
3 Volume of ECUs with AUTOSAR architecture [5] 4
4 Usage of AUTOSAR BSW layered architecture [5] 4
5 Simplified view of components and interfaces [8] 5
6 Overview of modules according to Implementation Conformance Class 3 [8] 6
7 Depiction of the AUTOSAR methodology [4] 9
8 Main States of ECU [16] . 11
9 All interfaces with MCAL drivers [21] . 16
10 Port and DIO Driver structure in the MCAL software layer [19], [22] . . . 19
11 Flow of PDUs and SDUs through the layers [8] 20
12 Bus and layer prefixes in different layers [8] 22
13 Detailed PDU Router structure [26] . 24
14 ArcCore Toolchain Workflow [11] . 31
15 BSW Builder module configuration view of the Operating System [10] . . 32
16 UML sequence diagram for the LED blinker 37

ix

List of Tables

1 Configuration of COM signals 1 . 38
2 Configuration of COM signals 2 . 38
3 Configuration of I-PDUs . 39
4 Configuration of destination PDUs . 39
5 Configuration of routing paths for PDUs 39

x

Abbreviations
ADC Analog/Digital Converter
AJSM Advanced JTAG Security Module
BSW Basic Software
CAN Controller Area Network
COM Communication
DAP Debug Access Point
DIO Digital Input/Output
DMM Data Modification Module
ECU Electronic Control Unit
EcuM ECU Manager
GIO General Input/Output
GPT General Purpose Timer
HDK Hardware Development Kit
HOH Hardware Object Handle
HRH Hardware Receive Handle
HTH Hardware Transmit Handle
ICC Implementation Conformance Class
IDE Integrated Development Environment
I-PDU Interaction Layer Protocol Data Unit
IoHwAb Input/Output Hardware Abstraction

LED] Light-Emitting Diode
LIN Local Interconnected Network
L-PDU Data Link Layer Protocol Data Unit
MCAL Microcontroller Abstraction Layer
MCU Microcontroller Unit
N2HET High-End Timer Module
N-PDU Network Layer Protocol Data Unit
NVRAM Non-volatile Random Access Memory
OEM Original Equipment Manufacturer
OS Operating System
PDU Protocol Data Unit
PDUR PDU Router
PLL Phase Lock Loop
PWM Pulse-Width Modulation
RTE Runtime Environment
RX Receive
SDU Service Data Unit
SPI Serial Peripheral Interface
SWC Software Component
TX Transmit
VFB Virtual Function Bus
XML Extensible Markup Language

xi

1 Introduction

The increasing Electrics/Electronics (E/E) complexity within the au-
tomotive domain and an increasing quantity of electronic control units1

leads to the need of a standard that would help to accomplish this rapidly
increasing complexity. The established open standards are key to man-
age the growing E/E complexity and improve development efficiency.
AUTOSAR – AUTomotive Open System ARchitecture is a development
partnership of automobile manufacturers (OEMs), suppliers, and tool
vendors and developers [5] that have been working on the development of
an open, standardized software architecture for automotive control units
(ECUs). The AUTOSAR architecture uses a layered architecture which
includes a complete basic and environmental software stack for electronic
control units. This stack, so called the AUTOSAR Basic Software is
being developed as an integration platform for hardware independent
software applications [2].
The main focus of this thesis lies in getting familiarized with the AU-
TOSAR and the modules of its basic software stack. For this purpose,
demo applications were developed under the open source implementa-
tion of AUTOSAR, embedded platform called Arctic Core by Swedish
company ARCCORE AB. These demos include two applications: a LED
blinker and CAN-bus communication. The next goal was to make these
applications running on a hardware development kit (HDK) by Texas
Instruments, called TMS570LS3137 HDK to be precise, and a RPP con-
trol unit, both available at the Department of Control Engineering at
CTU. The boards are shown in Figure 1 and 2. More about the RPP
can be found in [36].
The thesis is structured as follows. Chapter 2 provides an introduction
to AUTOSAR. The used basic software (BSW) modules are described in
Chapter 3. The open-source implementation Arctic Core is described in
Chapter 4. The configuration and implementation of demo applications
is described in Chapter 5. Conclusion is given in Chapter 6.

1A term for an embedded system that controls some of the electrical systems in a motor vehicle

1

1 Introduction

Figure 1 TMS570LS3137 HDK [1]

Figure 2 RPP Board [1]

2

2 AUTOSAR

This chapter describes the AUTOSAR as a whole. A reader should
get familiarized with the AUTOSAR partnership and created software
architecture and methodology. The foundation and goals and plans of
the AUTOSAR partnership are described in Sections 2.0.2 and 2.0.3.
After that, the software architecture is explained in Section 2.1. The
methodology created is described in Section 2.2.

2.0.1 Why AUTOSAR?
As mentioned in Chapter 1, the established open standards are key
to manage the growing E/E complexity and improve development ef-
ficiency. Moreover, Tier 1 suppliers1 are often faced with requirements
from legal enforcement, passengers and drivers requirements. These re-
quirements include e.g. environmental aspects, safety requirements, en-
tertainment domains, driver assistance, and much more. Due to all the
reasons mentioned above, the AUTOSAR partnership was founded [3].

2.0.2 Foundation
First discussions about common objectives were held in August 2002 by
BMW Group, DaimlerChrysler AG (now Daimler AG), Volkswagen and
automotive supplier Bosch, Continental AG. They were soon joined by
Siemens VDO (now part of Continental AG). Few months later, a tech-
nical team was set up to establish the technical implementation strategy.
The Core Partners formally signed the partnership in July 2003. The
Core Partners were afterwards joined by Ford Motor Company, Peugeot
Citroën Automobiles S.A., Toyota Motor Company and General Motors.
To the date of October 2012 there are a total of 146 corporate members
[3].

2.0.3 Goals and Plans
AUTOSAR leading OEMs and Tier 1 suppliers look upon this founda-
tion as an industry-wide challenge [3]. First of all, it must be ensured
that current and future vehicle requirements, e.g. safety, availability,
maintainability, or even software updates and upgrades will be fulfilled

1Companies that are direct suppliers to Original Equipment Manufacturers (OEMs)

3

2 AUTOSAR

[4]. Among others, an open standardized architecture should lead to
improved quality and reliability, as well as improved development and
thus optimized cost.
The one of the most important goals of the AUTOSAR are [14]:

∙ Standardization of basic software functions of automotive ECUs
∙ Scalability to different vehicle and platform variants
∙ Transferability of functional software modules within a particular
system

∙ Integration of software modules by different suppliers
∙ Development of highly dependable systems
∙ Sustainable utilization of natural resources
∙ Maintainability throughout the Product Life Cycle and software
update and upgrades throughout a vehicle lifetime

The AUTOSAR follows the principle “Cooperate on standards, compete
on implementation”. The main requirement is that implementation of
basic software and tooling must be enabled and supported worldwide.
Even though this global partnership creates one common standard, free
competition is expected on implementation level [5].

2.0.3.1 Future Plans

Since 2003, there have been several releases, with the newest Release 4.1
in March 2013. According to data statistics for 2011, there was about
25 million ECUs produced based on the AUTOSAR architecture. This
number is expected to grow to 300 million ECUs for the year 2016 [5].
The majority of the Core Partners will have finished their migration to
fully operational AUTOSAR Basic Software in 2015.

Figure 3 Volume of ECUs with AUTOSAR ar-
chitecture [5]

Figure 4 Usage of AUTOSAR BSW layered ar-
chitecture [5]

4

2 AUTOSAR

2.1 Software Architecture
The AUTOSAR uses a layered architecture in order to separate the
functionality from supporting hardware and to enable the development
of independent software components. Figure 5 and 6 show a decoupling
into different layers on an ECU.

Figure 5 Simplified view of components and interfaces [8]

Set of requirements and specifications that describe a software architec-
ture, application interfaces and a methodology can be found in docu-
ments available in the official website2.

2.1.1 Virtual Function Bus
Applications should be implemented in form of AUTOSAR Software
Components. These components have a well-defined interface that is
described within the AUTOSAR [4]. More importantly, they are imple-
mented independently from underlying hardware. The independence is
achieved by providing the Virtual Function Bus (VFB).
All components are connected through the VFB. The VFB not only con-
nects different components but also handles all communications mecha-
nisms between them. That means that all the software components do
not need to know about other components. They simply exchange infor-
mation via the VFB. The Virtual Function Bus is implemented by the
AUTOSAR Runtime Environment and underlying Basic Software [7].

2http://www.autosar.org

5

http://www.autosar.org

2 AUTOSAR

This ease development process of automotive software and enables better
integration of AUTOSAR Software Components.

2.1.2 Basic Software
It can be deduced from the Figure 5 that the AUTOSAR architecture
distinguishes on the highest abstraction level between three software
layers. Those layers are Application Layer, Runtime Environment and
Basic Software Layer that runs on a microcontroller.
The Basic Software contains specific components for an ECU and ser-
vices, such as communication, I/O management, memory management,
or an operating system. This layer is necessary to run the software. Over
past years there have been three conformance classes which were sup-
posed to ease the migration process to AUTOSAR [6]. Newest of them is
Implementation Conformance Class 3 (ICC3) in which all Basic Software
(BSW) modules are defined. The requirements on the basic software
cover the following domains: body, powertrain, chassis and safety. The
BSW layer is divided into the Services Layer, ECU Abstraction Layer,
Microntroller Abstraction Layer (MCAL), and Complex Drivers. Figure
6 shows this decoupling. MCAL is indicated by red color, above that
ECU Abstraction Layer by green, Services Layer by blue and Complex
Drivers by green on the right side.

Figure 6 Overview of modules according to Implementation Conformance Class 3 [8]

6

2 AUTOSAR

2.1.3 Run-Time Environment
The Runtime Environment is the realization of interfaces of the AU-
TOSAR Virtual Function Bus for a particular ECU. It is a layer medi-
ating and securing inter- (e.g. CAN, LIN, FlexRay, etc.) and intra-ECU
information exchange [4]. The RTE provides communication services to
the application software, that are the AUTOSAR Software Components
or the AUTOSAR Sensor or Actuator components by providing inter-
face and services [13]. The software components communicate with other
components and services via the RTE. Regarding the basic software, the
RTE may act as the mean by which software components access basic
software modules. The RTE code is generated automatically.

2.1.4 Application Software
First of all, it is appropriate to mention that AUTOSAR enables de-
velopers designing AUTOSAR applications almost independently from
hardware. Even though there is no knowledge about the network (the
software architecture and the RTE hides the network from application)
and about the used ECU (the software architecture abstracts from a
used ECU and its microcontroller), there is knowledge about the sen-
sors and actuators of an ECU which are used in a specific AUTOSAR
application [8].
The AUTOSAR Software consists of AUTOSAR Software Components
(SWC) that are mapped on the ECU. The AUTOSAR Software Com-
ponents provide the core functionality, i.e. the control logic necessary
for some tasks (e.g. ignition timing, exhaust gas recirculation strat-
egy, etc.) [35]. They encapsulate an application which runs on the
AUTOSAR infrastructure Interaction between components is achieved
through the RTE. Those components are the AUTOSAR sensor/actua-
tor components (ECU dependent) and the AUTOSAR application soft-
ware components (ECU independent) [4].

2.1.4.1 Sensor/Actuator Software Components

A sensor and actuator software component is an atomic piece of software.
The atomic software component cannot be divided into smaller parts
and cannot be distributed over several ECUs [8]. It is a whole unit. It
contains single threads of execution (Runnable Entities) and are later
mapped on an ECU. A responsibility of a sensor component is to read
and provide data to other components through input/output stack. A
responsibility of an actuator component is to set the state of an actuator
of a particular ECU. So it may provide an interface to other components
for initiating state setting of an actuator.

7

2 AUTOSAR

2.1.4.2 Application (composite) software components

A software component is a composite component. That means, it is a
logical interconnection of other component, either composite or atomic.
The composition allows the encapsulation of several pieces of the func-
tionality. For example, a composition that calculates the pulse width
for petrol injectors may contain two atomic software components – one
which calculates the base injector pulse width from the desired fuel mass
flow rate [35]. These components can be distributed over more than one
ECU [8].

2.2 Methodology
The AUTOSAR created a methodology that describes steps for building
E/E system. This includes four steps. First step is System Configura-
tion Description that includes all system information as well as inter-
connections between ECUs. It uses input information from the System
Constraint Description. The System Constraint Description describes
mapping of software components to one or more ECUs. The activity in-
volves the creation of a topology, the definition of the resource available
on an ECU, and the interconnection between ECU instances. Second
step is System Configuration Extractor. This step is used for extract-
ing the information from the System Configuration Description needed
for one specific ECU. It provides an extract of the system description
for a specific sub-system3. Since the content of the input description is
reduced to one sub-system, it allows a start of work on a ECU even if
the system is not completely described. Third step is ECU Extract that
basically includes information (configuration of the BSW and RTE) for
one specific ECU. The purpose of the ECU Extract is to extract infor-
mation out of the system description in order to be delivered as a basis
for setting up the ECU configuration and further development on ECU
level. Last step is ECU Configuration Description. In this step all infor-
mation for a specific ECU are known and an executable piece of software
and the code can be generated [2].
In order to support this methodology the AUTOSAR meta-model was
developed. The meta-model is modeled in UML. UML diagrams are
used to describe the attributes of AUTOSAR systems and their inter-
relationships. The AUTOSAR model is an instance of the AUTOSAR
meta-model. The information contained in the AUTOSAR model can be
anything that is representable according to the AUTOSAR meta-model.
The AUTOSAR XML schema is a schema that defines the language
for exchanging AUTOSAR models. The XML schema is derived from

3A part of whole system

8

2 AUTOSAR

the AUTOSAR meta-model4 by means of the rules defined in [12]. Im-
portantly, the AUTOSAR XML schema defines the AUTOSAR data
exchange format (i.e. the resulting AUTOSAR XML schema is used as
the official AUTOSAR data exchange format).
The AUTOSAR methodology is illustrated in Figure 7. All of those
system and ECU extracts can be generated automatically by using some
of available AUTOSAR tool chains by any AUTOSAR tool providers.

Figure 7 Depiction of the AUTOSAR methodology [4]

4Can be generated automatically out of the meta-model by using appropriate tools.

9

3 Used AUTOSAR BSW Modules

This chapter describes used AUTOSAR Basic Software Modules during
the development of demo applications. The modules located in System
Services (Section 3.1), Microcontroller Drivers (Section 3.2) and Port
Driver (Section 3.3) are used in both applications. To understand dif-
ference between the Port Driver and DIO Driver, their relationship is
described in Section 3.6. The layered architecture flow was explained in
Section 3.7. This should be helpful in understanding used modules for
CAN communication: COM module (Section 3.8), PDU Router (Section
3.9), CAN Interface (Section 3.10), CAN Driver (Section 3.11).

3.1 System Services
The System Services (Figure 6) are group of modules and functions lo-
cated in the services layer. Modules of all layers can use modules and
functions located in this group. Services from this group can be subdi-
vided into three smaller groups. They differ in terms of hardware and
microcontroller dependency. Some of them are microcontroller depend,
e.g. the Real Time Operating System, some of them partly ECU hard-
ware and application dependent, e.g. the ECU State Manager, and the
rest are both hardware and microcontroller independent.
The purpose of these services and functions is pretty obvious. They pro-
vide basic services for application and basic software modules. The only
module described in this chapter is ECU State Manager because other
modules from the system services are not important for the development
of our demo applications.

3.1.1 ECU State Manager
The ECU State Manager module (EcuM) is one of the crucial AU-
TOSAR basic software modules. It is in charge of managing initial-
ization and de-initialization of all basic software modules (that means
including the OS and the RTE). It manages conditions of an ECU states
OFF, RUN, and SLEEP. These conditions are e.g. check that an ECU
enters the OFF state when it is powered down or ensuring that the OS
is not shut down when entering the SLEEP state. Also it handles tran-
sitions states. The transitions are called STARTUP, SHUTDOWN, and
WAKEUP [16].

10

3 Used AUTOSAR BSW Modules

Figure 8 shows the cycle of main state machine provided by the EcuM.
The RUN state is entered after all basic software modules have already

Figure 8 Main States of ECU [16]

been initialized by the EcuM. Similarly, the SHUTDOWN transition
results in the SLEEP state, OFF state, or Reset transition after all
basic software modules were shut down (i.e. application have shut down
and no code is executed). If the Reset transition is entered, an ECU will
get to the STARUP state as shown in Figure 8.

3.1.1.1 STARTUP State

STARTUP state is subdivided into several sub-states (also called phases
according to [16]). This subdivision is created in order to make sure that
the most important BSW modules needed for proper functionality are
initialized first. The initialization is carried out through callouts. The

11

3 Used AUTOSAR BSW Modules

callouts are function stubs that the system designer can replace with
code to add functionality to a module which could not be specified by
the AUTOSAR. The primary goal of this state is to initialize all basic
software modules. A start-up procedure of an ECU is raised by the func-
tion EcuM_Init. EcuM_Init is subdivided into two phases. After that,
the RTE is started. It is assumed that a microcontroller initialization
has already taken place before calling of EcuM_Init [16].
At the beginning of the first phase (STARTUP I) callouts1 ensure ini-
tialization of any pre-OS driver, low level initialization code. Among
initialized modules may be a development error tracer, MCU Driver,
PORT and DIO, or Watchdog Driver and Manager. When this sequence
of callouts is finished, the AUTOSAR OS is started [16].
During the second phase (STARTUP II) callouts2 ensure initialization
of those BSW modules that need the OS support. It may be subdi-
vided into modules that do not need access to NvRam and modules that
rely on NvRam data. Modules that may be initialized are e.g. SPI
Driver, NVRAM Manager, Flash Driver, CAN Driver, CAN Interface,
LIN Driver, FlexRay Driver, I-PDU Multiplexer, COM and several more
[16].
Complete list of modules initialized during these phases can be found in
[16].

3.1.1.2 RUN State

After all modules (including the OS and RTE) have been initialized,
this state is entered. This state serves as an indication to software com-
ponents above the RTE that an application is running. It is necessary
that a software component request RUN state (otherwise, the ECU will
launch shutdown) [16].
All actions in the RUN state are carried out by function EcuM_MainFunction.
First phase is invoked by call of EcuM_OnEnterRun and this is the part in
which a software component executes its tasks [16]. Similarly, callout of
EcuM_OnExitRun is invoked when leaving this RUN state. The Figure 8
does not show the POST RUN state. This state can be requested before
completely leaving the RUN state by software components to indicate
the need to execute clean-up, saving data, or switching off peripherals
before calling shutdown process of an ECU [16].

3.1.1.3 SHUTDOWN State

This state is responsible for the shutdown of all basic software modules
and should ends up in either SLEEP, OFF, or Reset state. An important

1EcuM_AL_DriverInitZero and EcuM_AL_DriverInitOne
2EcuM_AL_DriverInitTwo and EcuM_AL_DriverInitThree

12

3 Used AUTOSAR BSW Modules

activity in the SHUTDOWN state is to write non-volatile data back to
Non-volatile Random Access Memory (NvRam) [16]. When entering this
state, all applications have been de-initialized [16].
SHUTDOWN can be subdivided into several transition states. These
states are PREP SHUTDOWN, GO SLEEP, and GO OFF. First of all,
during the transition called PREP SHUTDOWN are all handlers and
managers of BSW modules shut down. This transition is a common for
all shutdown targets (i.e. SLEEP, OFF, reset). Subsequently, either GO
SLEEP transition state, or GO OFF transition state may be entered
[16].
During the GO SLEEP transition state, persistent data should be saved
to NvRam and the EcuM should set up the wake up sources for next
sleep mode by calling EcuM_EnableWakeupSources [16]. During this
state the OS is not shut down.
During GO OFF state the RTE is stopped, and modules such as Commu-
nication Manager, Basic Software Mode Manager, or Scheduler Manager
are de-initialized. This state ends with call of the ShutdownOS service.
This service ends up in the shutdown hook called EcuM_Shutdown which
switches off an ECU (OFF state)3 or performs the reset (reset state)4

[16].

3.1.1.4 WAKEUP State

WAKEUP state is entered when an ECU comes out of the SLEEP state.
First, during the WAKEUP phase Microcontroller Unit (MCU) is re-
stored to normal mode and. Moreover, drivers that need re-initialization
(usually drivers with wake up sources) are re-initialized by invoking the
EcuM_AL_DriverRestart.
Because of the reason that wake up events may be unintended, e.g. the
Evaluation Module (EVM) spike on CAN line, wake up events must be
validated. When any wake up error occurs, SLEEP state is left, an ECU
is woken up, and execution resumes by calling MCU_SetMode of the MCU
driver [16].

3.2 Microcontroller Drivers
Microntroller Drivers are part of MCAL layer as shown in Figure 6.
These drivers may have direct access to a microcontroller hardware (e.g.
Core test [15]) and are intended to handle internal peripherals. Among
included modules are General Purpose Timer Driver module (GPT),
Watchdog Driver module and MCU Driver module.

3EcuM_AL_SwitchOff callout
4Mcu_PerformReset callout

13

3 Used AUTOSAR BSW Modules

3.2.1 MCU Driver
The Microcontroller Unit Driver (MCU) is located in the Microcon-
troller Abstraction Layer. It has the direct access to a microcontroller
hardware. As standardized according to the AUTOSAR, it provides ini-
tialization services for a microcontroller initialization, power down and
reset functionality, and other microcontroller specific functions required
by other MCAL modules. During initialization process, it takes care
of setting up MCU clock, PLL, clock pre-scalers, as well as setting up
RAM sections. Furthermore, it activates microcontroller reduced power
modes and reset [17].
However, before the initialization of the MCU driver takes place, a start-
up code that ensures basic initialization of a microcontroller must be ex-
ecuted. This code is very MCU specific and is not AUTOSAR standard-
ized. A start-up code must be executed after power up or microcontroller
reset. The code should execute basic initialization steps, i.e. set up base
addresses for interrupt vector tables, initialize an interrupt stack pointer
and a user stack pointer, enable cache memory 5, initialize a minimum
amount of RAM, or initialize features like memory protection [17].
The MCU driver features are described in [18].
In our examples, the MCU specific settings is configured in file Mcu_Cfg.c.
The configuration set contains the clock setting, i.e. PLL setting.

3.3 Port Driver
We start with the description of terms Port Pin and Port according to
AUTOSAR to understand the difference. The term Port Pin represents
a single configurable input or output pin on an MCU device. The term
Port represent the whole configurable port on an MCU device [20].
The Port Driver is responsible for overall configuration and initialization
of a whole port structure of a microcontroller. A configuration depends
on a specific microcontroller and an ECU [19].
Ports and port pins can be assigned one of many various functional-
ities, e.g. general purpose Input/Output, Analog/Digital Converter
(ADC), CAN, Pulse-Width Modulation (PWM), Serial Peripheral In-
terface (SPI), and many more. Port pins must be configured in the Port
driver as DIO, ADC pin, etc. because the Port driver is only connected
to other input/output drivers (DIO Driver, ADC Driver, etc.) by means
of configuration [19].

5If supported by a MCU

14

3 Used AUTOSAR BSW Modules

3.3.1 Configuration of the MCU port/port pins
The configuration data for the Port driver are included in the external
data structure Port_ConfigType. The type of Port_PinType (uint8,
uint16, or uint32) is based on a specific MCU. Every port pin number
has assigned a symbolic name of a port pin to make a configuration
clearer.
Parameters used in the structure Port_ConfigType pin mode, pin di-
rection, decision whether pin direction and pin mode are changeable
changeable during runtime. Configuring a pin mode, (e.g. ADC, SPI,
etc.) is not mandatory if a port pin is configured as a DIO [19]. On
the other hand, pin direction (input, output) is mandatory when a port
pin is used as a DIO [19]. Defining whether a pin direction and a pin
mode are changeable during runtime is MCU dependent [19]. Moreover,
Port_ConfigType may contain optional parameters.
An overall initialization is done by calling the function Port_Init. Af-
ter power-on reset, the first things to be done are bring GIO out of
reset by writing 1 to Global Control Register (GIOCR06), disabling the
interrupts for pins GIOA[7:0] and GIOB[7:0] by writing 1 Interrupt En-
able Clear Register (GIOENACLR), and setting low level interrupts by
writing 1 to Interrupt Priority Clear Register (GIOLVLCLR).
Before the description of subsequent function, the Port_RegisterType
will be described. This type is used to access Port registers that handle
I/O functionality. It is (except Functionality register) same as
GIO_RegisterType located in file core_cr4.h which is used to access
GIO Port registers. Pointers used to access different ports are then
grouped into an array to ensure their straightforward utilization in later
code.
The function Port_RefreshPin is called after Port_Init. This function,
and functions Port_SetPinDirection, Port_RefreshPortDirection and
Port_SetPinMode7 can be used to change the registers depending on a
configuration.

3.4 I/O Hardware Abstraction
The I/O Hardware Abstraction (Figure 6), abbreviated as IoHwAb is
located above MCAL drivers. That means, it will call drivers’ APIs to
manage on chip devices. The purpose of IoHwAb is to provide access
to MCAL drivers by mapping IoHwAb ports to ECU signals [21]. The
following picture shows all interfaces of MCAL drivers:

6according to [31]
7Not applicable to all modules

15

3 Used AUTOSAR BSW Modules

Figure 9 All interfaces with MCAL drivers [21]

If the functionality of MCAL modules’ drivers is abstracted, the RTE
can be independent on hardware [21]. There are currently several mod-
ules handled by IoHwAb from which three are supported by ArcCore.
These modules are Pulse-Width Modulation Driver module (PWM),
Analogue/Digital Converter Driver module (ADC) and Digital I/O Driver
module (DIO). Due to the reason that nor PWM, neither ADC are used
in our examples, we are concerned only about DIO.
The IoHwAb cannot provide Standardized AUTOSAR Interfaces to AU-
TOSAR software components. Instead, the IoHwAb provides interfaces
(not standardized) which represent an abstraction of electrical signals
coming from the ECU inputs or addressed to ECU outputs. Intention of
the IoHwAb is that it also performs filtering, debouncing, or conditiong
of input signals which are read through I/O drivers [21].

16

3 Used AUTOSAR BSW Modules

3.5 DIO Driver
The DIO driver module works on pins and ports configured by the PORT
driver. There is no initialization or even configuration of pins and ports
in the DIO driver (this is done by the PORT driver).
At the beginning, let us define the key terms. DIO channel represents
a general purpose input/output pin, DIO port represents several DIO
channels usually controlled by one hardware register (i.e. grouped by a
hardware), DIO channel group represents several adjoining DIO channels
represented by a logical group and belong to one DIO port. The purpose
of the DIO driver is to provide services for reading and writing to and
from DIO ports, channels, or channel groups. In other words, it provides
services to setting and getting the state of microcontroller’s pins [23].

3.5.1 Read & Write Services
Read and write functions of the DIO driver depend on the fact whether
is dealt with the level of a single channel (i.e. a single pin), all channels
of a port, or a channel group. These functions are Dio_ReadChannel
(Port, ChannelGroup) and Dio_WriteChannel (Port, ChannelGroup)
[22].

3.5.1.1 Dio_ReadPort

The purpose of this function is to read level (STD_HIGH, STD_LOW)8

of all channels of a particular port. A parameter is an ID of a port and
the value is obtained by reading DIN register.

3.5.1.2 Dio_WritePort

Opposite to reading level of all channels, this function sets simultane-
ously level of all output channels. Parameters of this function are an ID
of a port and a level. The level value is written into DOUT register of
a port.

3.5.1.3 Dio_ReadChannel

This function is used to get the logical value from a pin. First, Dio_ReadPort
is called and the value of all channels is stored into portVal variable.
Then, a value of the position of a used bit is obtained in the same man-
ner as in the Port driver (i.e. shifting 1 to the left by logical sum of a
channel ID and value 0×1F) and the values is stored into the variable
called bit. Finally, if statement compares portVal and bit, and decides
whether the value of the channel is STD_HIGH or STD_LOW.

8These are represented by logical 1, logical 0 respectively.

17

3 Used AUTOSAR BSW Modules

3.5.1.4 Dio_WriteChannel

This function sets the logical value of an output pin. Parameters of this
function are ID of a channel and the level. As in previous function, a
value of the position of a used bit is obtained first. It is necessary to
check whether a channel is not defined as an input channel. In that case,
function does not proceed. In other case, the current value of channels
is read by calling Dio_ReadPort. After that if statement is used. If the
level is STD_HIGH, the value of a desired bit is set. On the other hand,
if the level is STD_LOW, a desired bit is cleared. The new value is
stored in portVal and Dio_WritePort is called.

3.5.2 Configuration of the DIO driver
Similarly as configuration of the Port driver, the DIO driver includes
types that are used to define channels and ports. Dio_ChannelType is
the type representing a numerical ID of a channel. A numerical ID of a
port is described by defining Dio_PortType.

3.6 Relationship between PORT Driver and DIO
Driver
Since the DIO driver works on pins and ports configured by the Port
driver, the Port driver should be initialized before the use of the DIO
functions to avoid unexpected behaviour. The configuration of the Port
driver mentioned above is used in the DIO module. Both of these mod-
ules are a part of the Microcontroller Abstraction Layer. The figure 10
shows the structure of the modules in this layer.

18

3 Used AUTOSAR BSW Modules

Figure 10 Port and DIO Driver structure in the MCAL software layer [19], [22]

3.7 CAN Communication – Layered Architecture
Flow
Before anything else, the terms in Protocal Data Unit (PDU) flow through
the layered architecture will be explained in order to avoid any confusion

19

3 Used AUTOSAR BSW Modules

in later sections. Let us begin with the Figure 11,

Figure 11 Flow of PDUs and SDUs through the layers [8]

As we can see, PDUs and Service Data Units (SDUs) are used in several
layers. However, different prefixes are used in different layers for PDUs in
order to distinguish PDUs in those various layers. This will be explained
later, though.

3.7.1 Signal
A signal in the communication module of the AUTOSAR (AUTOSAR
COM) context is equal to a message in the communication module ac-
cording to the open automotive standard Open Systems and their Inter-
faces for the Electronics in Motor Vehicles (OSEK COM). According to
OSEK COM, a message defines a mechanism for data exchange between
different entities and with other CPUs. An AUTOSAR signal is carried

20

3 Used AUTOSAR BSW Modules

by one or more signals in COM. An AUTOSAR signal is transformed to
a AUTOSAR COM by the RTE. AUTOSAR COM does not necessar-
ily have to be the same as an AUTOSAR signal because in the case of
complex data types, the transformation may change the syntax a little
bit [24].

3.7.2 SDU
SDU is the abbreviation of Service Data Unit. It is a part of a PDU.
SDU is the data passed by an upper layer, with the request to transmit
data. On the other hand, it is also data extracted by a lower layer after
reception and passed to an upper layer [15].

3.7.3 PCI
PCI is the abbreviation of Protocol Control Information. The PCI is
added by a protocol layer on the transmission side and is removed on the
receiving side. It is information needed to pass SDU from one instance
of a specific protocol layer to another instance. For example, it contains
source and target information [15].

3.7.4 PDU
PDU is the abbreviation of Protocol Data Unit. It contains SDU and
PCI. On the transmission side the PDU is passed from the upper layer
to the lower layer which interprets is as its SDU [15].

3.7.5 PDU & SDU Naming Conventions
As mentioned above different prefixes are used for naming PDUs in dif-
ferent layers. Since there is no use of LIN or FlexRay in our examples,
we are not concerned about different bus prefixes. PDUs are divided into
Interaction Layer Protocol Data Unit (I-PDU), Network Layer Protocol
Data Unit (N-PDU), and Data Link Layer Protocol Data Unit (L-PDU)
for various layers. All prefixes are described in the following figure:

21

3 Used AUTOSAR BSW Modules

Figure 12 Bus and layer prefixes in different layers [8]

An I-PDU is used for the data exchange of the AUTOSAR COM mod-
ule. The I-PDU consists of one or more signals and is assembled and
disassembled in the COM module [25]. There may be an I-PDU group
which is a collection of I-PDUs. A L-PDU is assembled and disassem-
bled in the AUTOSAR Hardware Abstraction Layer [25]. The maximum
length of an I-PDU depends on the maximum length of a L-PDU be-
cause I-PDUs of the COM module are passed via the PDU router. The
maximum length of CAN and LIN L-PDU is 8 bytes, of FlexRay is 254
bytes. The Communication Hardware Layer and the Microcontroller
Abstraction Layer is the equivalent to the Data Link Layer [24]. The
L-PDU consists of an identifier, data length code and data (i.e. SDU).
It is also bus specific, e.g. CAN frame. A N-PDU is used by transport
protocol modules to fragment an I-PDU [26]. Transport protocol mod-
ules are not used in our examples. However, it is appropriate to mention
that it is a set of data coming from the PDU router (Section 3.9).

3.8 COM Module
The COM module is a part of communication services (Figure 6). These
services are interconnected with communication drivers via communica-
tion hardware abstraction. The COM module is located between the
RTE and the PDU router. The main feature of this module is the pro-
vision of signal oriented data interface for the RTE [24].
Some of other key features are following [24]:

∙ Packing of AUTOSAR signals to I-PDUs to be transmitted
∙ Unpacking of received I-PDUs and provision of received signal to
the RTE

∙ Routing of signals from received I-PDUs into I-PDUs to become
transmitted

22

3 Used AUTOSAR BSW Modules

∙ Communication transmission control

All of main features can be found in [24].
There are also filtering and notification mechanisms for incoming signals
supported. For example, there is notification function for error notifi-
cation, timeout notification function for case of any signal timeouts, or
transit (TX) and receive (RX) notification. These notifications are con-
figured in the structure ComSignal_type in Com_PbCfg.c.
Other properties when defining a signal are an ID for a signal and the nu-
merical value which is used as an ID of a particular I-PDU (ComIPduHandleId).
This ID is required to either by the API calls to receive an I-PDU from
the PDU router, or by the PDU router to confirm the transmission of
an I-PDU. Furthermore, the initial value of the signal is defined, as
well as the type of the signal. From other defined properties, the most
important ones are the size of a signal in bits, starting position (bit)
of a signal within an I-PDU, the endianess of signal’s network repre-
sentation, bit position in a PDU for signal’s update bit, and definition
whether a signal can trigger the transmission of the corresponding I-PDU
(ComTransferProperty).
Besides that, the configuration structure for an I-PDU is ComIPdu_type.
Each I-PDU has a unique ID for easy PDU handling. Then the size of
an I-PDU is set in bytes and the direction of an I-PDU (RECEIVE or
SEND) is set as well. Signal processing mode can be configured for either
unpacking received I-PDU or the transmission on an I-PDU. There are
two modes configurable [24]:

∙ IMMEDIATE: signal indication / confirmation are performed in
Com_RxIndication / Com_TxConfirmation

∙ DEFERRED: signal indication / confirmation are deferred for ex-
ample to a cyclic task

Reference to the actual PDU data storage and reference to signals con-
tained in an I-PDU are defined as parameters in the structure ComIPdu_type.
Also an optional callout function can be configured for both sender and
receiver side.

3.9 PDU Router
The PDU Router is a part of communication services (Figure 6). It is
placed below COM module. It must be instantiated in every AUTOSAR
ECU where communication is necessary. How the name indicates, its
main task is to route I-PDUs between the Communication Services and
the Communication Hardware Abstraction Layer modules. The PDU
Router consists of two main parts, the PDU Router routing tables and

23

3 Used AUTOSAR BSW Modules

the PDU Router Engine. The PDU Router routing tables are static rout-
ing tables describing the routing attributes for each I-PDU that should
be routed. The PDU Router Engine is the actual code that performs
routing actions based on the routing tables. No routing operation mod-
ify actual I-PDU. Detailed PDU Router structure is shown in Figure
13. Besides routing an I-PDU from source to destination, it is respon-
sible for translating an ID of an I-PDU to destination. Moreover, the
PDU Router Engine provides an additional minimum routing capability
which is independent of the PDU Router. This allows access to the Di-
agnostic Communication Manager (used during car diagnostic) even if
the routing tables are corrupted or not programmed [26].

Figure 13 Detailed PDU Router structure [26]

How can be derived from the description of the module above, the PDU
Router can transmit I-PDUs to lower layer modules if requested by up-
per layer modules. Contrarily, it can receive I-PDUs from lower layer
modules and forward them to upper layers. However, it can be also used
as PDU Gateway, so it can receive I-PDUs from lower layer modules
and transmit them via the same or other lower layer modules right after
that.
An I-PDU is identified with a unique ID represented by a symbolic name.
It is required that each BSW module that handles I-PDUs must contain
a list of I-PDUs IDs [26]. The destination of an I-PDU is determined by

24

3 Used AUTOSAR BSW Modules

using those IDs configured in a static configuration table. In the source
code, the file PduR_PbCfg.c contains these configuration tables.
First, PDU Router destinations are stored in the structure PduRDestPdu_type.
This includes a unique PDU ID which will be used by the PDU Router.
Plus, the way how a data is provided to communication interface mod-
ules, i.e. COM Module (Section 3.11), Can Interface (Section 3.10), is
defined. This is called a data provision mode. There are three data
provision modes configurable [26]:

∙ DIRECT – data to be transmitted are provided directly at the
transmit request (the PDU Router should not buffer an I-PDU)

∙ TRIGGER TRANSMIT – data to be transmitted will be retrieved
by the interface module via a callback function

∙ NO PROVISION – there is no data provision

Definition (by providing symbolic name) of a destination module to the
configuration structure by Arctic Core is also added in the structure
PduRDestPdu_type.
Furthermore, the structure PduRRoutingPath_Type contains the length
of an I-PDU data9. Moreover, it specifies the source module for this
route, the source ID and the destination of an I-PDU to be routed.

3.10 CAN Interface
The CAN Interface is located in the Communication Hardware Abstrac-
tion layer below communication services layer and above communication
drivers (Figure 6). The CAN Interface module provides an interface to
the services of the CAN Driver. That means it manages hardware de-
vices like CAN controller and transceivers. The main goal is to include
all CAN hardware independent tasks which belong to CAN communi-
cation to this module, so that underlying layer (CAN Driver) can focus
only on access and control of a specific CAN hardware device [27].
According to AUTOSAR specifications, the services can be divided into
several groups [27]:

∙ Initialization
∙ Transmit request services
∙ Transmit confirmation services
∙ Reception indication services
∙ Controller mode control services
∙ PDU mode control services

9Only required if a TX buffer is configured

25

3 Used AUTOSAR BSW Modules

3.10.1 Initialization sequence
This section is mentioned because during the initialization of CAN In-
terface the function of CAN Driver Can_InitController (according to
[28] can be changed to Can_ChangeBaudrate) is called. The function
Can_InitController should re-initialize the CAN controller and the
controller specific settings.
According to the AUTOSAR, the function CanIf_Init is called in
EcuM_Callout_Stubs.c for the initialization of the CAN Interface. The
CAN Driver is initialized separately by calling corresponding function
in the same file.
First of all, it is ensured that CAN controllers are in the state
CANIF_CS_STOPPED10 (this value is actually assigned as the controller
mode), and the value of CANIF_GET_OFFLINE is assigned as the PDU
mode. Next, the function CanIf_PreInit_InitController can be called.
The most important feature inside this function is that reference11 to
CAN controller configuration data is assigned to the variable canConfig
which is used as the parameter during call of Can_InitController func-
tion (located still inside the same function). The function Can_InitController
is described in Section 3.11.

3.10.2 Hardware Object Handles (HOH)
Hardware object handles are two types, hardware transmit handle (HTH)
and hardware receive handle (HRH). They are reference to the CAN
mailbox structure that contains parameters such as a CAN ID, data
length code or data. They are used as parameters in the calls of CAN
interface services and are provided by the CAN Driver configuration.
The CAN Interface remains independent of hardware because it acts
only as a user of HOH and does not interpret it on the basis of hardware
specific information [27] (Section 3.11).

3.10.3 Transmit request sequence
Upper layer modules use the service CanIf_Transmit to start a transmit
request of a PDU. This function first check initialization of the CAN
interface. Then parameters from configuration structures (which are
located in CanIf_Cfg.c) are assigned to various variables. Among these
parameters are PDU ID, data length code, CAN ID for transmit of
CAN L-PDU, or the pointer to SDU. Furthermore, based on a input
parameter during call of CanIf_Transmit, a unique HTH ID, defined
in the CAN Driver module (in other words, this parameter refers to the

10Located inside CanIf_Init
11This reference is located inside the structure CanIf_ControlerConfigType located in CanIf_Cfg.c

26

3 Used AUTOSAR BSW Modules

particular HTH object in the CAN Driver module configuration), is used
as the input parameter for call of the function Can_Write together with
setting of PDU as a second parameter. Can_Write function is located in
Can.c and is responsible for setting registers necessary for transmission.

3.10.4 Reception indication sequence
The reception indication is used by the CAN Driver in the case when
some feedback is required during the reception of a PDU.
In case of new reception on an L-PDU the CAN Driver calls
CanIf_RxIndication of the CAN interface [27]. This callback is de-
fined together with CanIf_TxConfirmation in Can_Lcfg.c. The input
parameters of this function are HRH, a unique CAN ID, data length code
of received data and pointer to received L-SDU. The HRH identifies one
CAN hardware receive object, where a new CAN L-PDU arrived.
Considering CanIf_RxIndication function, a list of RX PDUs is ob-
tained from the initialization parameters of the CAN Interface as the
first step. Then, the configuration parameters of RX PDUs from the
file CanIf_Cfg.c are compared with the input parameters of this func-
tion. This comparing has its meaning. First of all, the received PDU
must pass software filtering (the first step is to decide whether HRH is
type Basic CAN or Full CAN12). After that, if defined as required, data
length code check must be performed.
In case temporary buffering is used, the hardware object remains locked
until all data is read out and copied to this temporary buffer. If no
temporary buffering is used, the hardware object remains locked until
all data is read out and the indication service returns [27].

3.11 CAN Driver
The CAN Driver module is located in the communication drivers layer
that is the lowest layer above hardware (Figure 6). It provides uni-
form interfaces for the layer above which is CAN Interface. The CAN
Driver module provides services for initiating transmissions and calls the
callback functions of the CAN Interface module, independently from
hardware. The CAN controllers provide services to control behaviour
and the state of controllers (e.g. Can_DisableControllerInterrupts,
Can_CheckBaudrate, Can_SetControllerMode and much more that be-
longs to the same CAN Hardware Unit. The CAN Hardware Unit con-
sists of one or more CAN controller of the same type. It may be on-chip
or an external device. One CAN driver represents the CAN Hardware
Unit. The CAN controller serves one physical channel. [28], [29]

12For Basic CAN software filtering is enabled.

27

3 Used AUTOSAR BSW Modules

The file Can_Lcfg.c contains structures with the configuration of con-
trollers and hardware objects, and CAN callbacks.
The structure Can_ControllerConfigType contains among others these
following parameters:

∙ Controller ID
∙ Baud rate in kbps
∙ Propagation delay in time quantas13

∙ Phase segment 1 and 2 in time quantas
∙ Reference to the CPU clock configuration (set in the MCU driver)
∙ Process type (INTERRUPT or POLLING) for busoff, RX and TX
processing

∙ List of HOH IDs that belong to a particular controller

The structure Can_HardwareObjectType contains these parameters:
∙ Handle ID of HRH or HTH
∙ Type of a hardware object (Basic CAN or Full CAN)
∙ Type of ID value (EXTENDED, STANDARD or MIXED)
∙ ID value
∙ Object type (whether is used as transmit or receive)
∙ Reference to the filter mask
∙ Mask which tells the driver whether Hardware Message Box should
be occupied by this HOH

During L-PDU transmission, the CAN Driver writes a L-PDU in an
buffer inside the CAN controller hardware. During L-PDU reception,
the CAN Driver calls the RX indication function. These functions
Can_Write, handleRxMsgObject (CanIf_RxIndication is located inside
this function), as well as functions such as Can_Init, Can_InitController,
or Can_SetControllerMode are located in Can.c and all necessary regis-
ters of DCAN are set in these functions. The function Can_InitController
is called only from the CAN Interface and is responsible for setting ini-
tial values of DCAN registers, namely CAN Control Register (CTL), Bit
Timing Register (BTR), and IF registers14.

13A fixed amount of time which is derived from the CAN controller clock with a prescale factor
14For more information refer to [31].

28

4 ArcCore

In this chapter ArcCore company and their products are introduced.
ArcCore open-source licensed products are described in Section 4.2. As
we can see in the Section 4.2.1, several demo applications have already
been created. List of some of these modules is included. In addition to
open-source licensed products, ArcCore also offers commercial plugins
with the graphical interface. Description of these plugins can be found
in Section 4.3.

4.1 Software Implementation in General
As mentioned above the AUTOSAR partnership advocates the principle
“Cooperate on standards, compete on implementation”. According to
this principle, several software vendors have hit the market with soft-
ware implementation of the AUTOSAR standard. Some of these soft-
ware suppliers are namely Vektor Informatik, Continental Engineering
Services, Bosch, Freescale, Elektrobit, OpenSynergy, or ArcCore.
Offering of these companies varies. Few of them offer a complete stack
that includes implementation of basic software, a basic software config-
urator, a real-time environment configurator, and also system tools like
a software components builder or an extract builder. However, we can
find companies among whose products are only some parts of the whole
stack, usually lacking a system tooling but some of them offer even less,
i.e. only a basic software implementation and a realtime environment
configurator.
Nevertheless, almost all companies’ products are licensed under the com-
mercial license. ArcCore company provides an AUTOSAR embedded
platform and an Eclipse based Integrated Development Environment
(IDE) under Open Source license. Besides that, they also offer the com-
mercial plugins for their IDE. The open-source license is the main reason
why ArcCore products were chosen for the purpose of this project.

4.2 Open Source Licensed Products
Open source means that source code is downloadable free of charge and
a user is allowed to modify and distribute the (modified) source code.
An open source product by ArcCore is called Arctic Core. Artic Core

29

4 ArcCore

is the AUTOSAR embedded platform. It includes all basic software
modules and their source codes as well as build scripts needed to build
system according to AUTOSAR version 3.1. Nonetheless, as mentioned
in the official website’s latest news at the time of writing this thesis
“global Tier1 has decided to base their next safety critical ECU for
mass-production on ARCCORE AUTOSAR 4.x product portfolio” [9],
so the transition to AUTOSAR version 4.x is expected.
Second free of charge product is called Arctic Studio. It is a complete
Eclipse based IDE. It also includes GCC compilers for target boards. Ad-
ditionally, a user can extend those by purchasing commercial compilers
such as Freescale Codewarrior. Moreover, commercial plugins exist for
easier development of AUTOSAR system. These plugins are discussed
in Section 4.3.

4.2.1 Source Tree Examples
Arctic Core currently include examples for boards with MCUs such as
Freescale MPC5xxx, HCS12, Arm Cortex M3 and R4. The examples
illustrate functional implementation of some AUTOSAR basic software
modules. These examples served as a basis for examples developed for
our target boards. Detailed explanation is mentioned in subsequent
chapters. Several examples for different target boards are located in the
source tree of Arctic Core. The target boards STM3210C-EVAL and
TMDX570LS20SMDK are based on ARM microcontrollers, the same
microcontroller board family that is used for our target boards. These
examples are:

∙ Simple OS: Demonstrates basic OS functionality – an alarm sets
an event in a task, a task sets another event and waits for a new
event.

∙ Simple RTE: Demonstrates basic Runtime Environment (RTE)
functionality between software components.

∙ Simple CAN: Shows example of CAN communication – sends one
CAN frame and receives one CAN frame.

∙ LED RTE: An application that flashes a LED on a board (with
RTE defined).

∙ Ledmaster: An application that flashes a LED on a board. The
pulse-width modulation is used. The frequency is changed by send-
ing a new period in a CAN message.

These examples were created for following target boards:
∙ STM3210C-EVAL – Simple OS
∙ TMDX570LS20SMDK (TI TMS570LS) – Simple OS, Simple RTE
∙ QRtech MPC5567 G3 – Simple OS, LED RTE
∙ iSYSTEM MPC551x – Simple OS, Simple CAN
∙ ELMICRO CARD12 (HCS12) – Simple OS, Ledmaster

30

4 ArcCore

4.3 Commercial Plugins
ArcCore company offers commercial tools for Arctic Studio. They con-
tain a graphical interface and are used to generate source code of the
AUTOSAR system. By using these tools, a developer can easily define
software components, used basic software modules and set up all neces-
sary configuration of either BSW or RTE. The workflow of the toolchain
is illustrated in Figure 14.

Figure 14 ArcCore Toolchain Workflow [11]

Most importantly, during the development of our examples, none of
the commercial plugins were available. Therefore, all code had to be
modified and created manually.

4.3.1 SWC Builder
SWC Builder is a tool for creating and editing AUTOSAR Software
Components, Port interfaces, etc. It is compatible with the AUTOSAR
exchange format (*.arxml) as mentioned in 2.2. A user can pre-define
a kit that will include objects needed to get started with the develop-
ment, e.g. a server kit including server behaviour (events and runnable
entities) and server implementation. Software components can be then
created by using some of these pre-defined kits. Consequently, compo-
nents, interfaces, data types and so on may be put into packages to keep
them organized. The tool has also validation rules to identify incorrect
configurations [10].

4.3.2 Extract Builder
Extract Builder is a tool for creating ECU extract. The tool connects
all components with each other. Software components can be either cre-
ated by using SWC builder or any third party software. All components

31

4 ArcCore

included in an Eclipse project will be added to a library of components
in the Extract Builder environment. After that, a user can create com-
ponent instance, in other words add them to an ECU extract. Com-
ponents added to an ECU extract can be also connected to ports and
system signals. All connections are created either manually or can be
created automatically by the Extract Builder. For larger models there
is an overview available to display all components and their connections
[10].

4.3.3 BSW Builder
BSW Builder is a tool for editing and generating BSW configurations
for AUTOSAR. It is the key tool for making the development easier and
faster. A developer can select which BSW modules to use and after that
configure them through an editor tailored for a specific module. After
the whole configuration is done, the tool generates configuration files for
the platform based on Arctic Core. Not to mention that a validation tool
is included, thus a developer receives immediate feedback about invalid
or missing configuration [10].
To illustrates this, Figure 15 shows BSW Builder in use.

Figure 15 BSW Builder module configuration view of the Operating System [10]

32

4 ArcCore

4.3.4 RTE Builder
RTE Builder is a tool for configuration of the RTE. Even though, the
tool is also a plugin to the Arctic Studio, ArcCore labels this tool as a
plugin module to BSW Builder. A developer can use RTE Builder for
mapping runnables to tasks. The runnables (or runnable entities) are
executable functions of software components. In other words, the RTE
Builder is used to specify how specific software components should be
scheduled and executed on the platform. It uses an ECU extract as an
input. The extract may be either generated by Extract Builder or any
third party software. After setting up all configurations, the RTE code
is generated. Moreover, the validation tool again checks whether the
RTE code contains any errors [10].

33

5 Demo Applications

This chapter describes the configuration of the BSW modules and call-
ing sequence within these modules for the demo applications that were
created as part of this thesis. The goal of the first demo, called LED
Blinker (Section 5.1), is to make a LED located on TMS570LS3137 HDK
blinking. For the RPP board, a LED pin is not included on the board,
thus the LED was added to a pin with different pin configured as GPIO.
This is mentioned in Section 5.1.4. The goal of the second demo, called
CAN communication (Section 3.11), is to exchange messages between
two CAN controllers, namely DCAN1 and DCAN2 located on both
TMS570LS3137 HDK and the RPP board.

5.1 LED Blinker – HDK
As mentioned in Chapter 3, the MCU Driver, the EcuM and the Port
Driver are used in both demos. The MCU specific settings is configured
in file Mcu_Cfg.c. The configuration set contains the clock setting, i.e.
PLL setting. Since the number or RAM sectors is set to 0, no RAM
sector configuration data are included. Other used modules are DIO
Driver and IoHwAb.

5.1.1 Configuration of Port Driver
The type of Port_PinType uint32 is used because of bit shifting that
exceeds 16-bit integer. The parameters for our LED example are the
activation of pull-up/pull-down functionality and enabling open-drain
capability. Configuration of the pin used in the example is:

∙ Pin mode: GIO
∙ Pin direction: Output
∙ Pin direction changeable: No
∙ Pin mode changeable: No
∙ Pulldown/pullup selection: None
∙ Open-drain: Disabled (push/pull mode)
∙ DMM used: No

As mentioned in Chapter 3, pointers used to access different ports are
grouped into an array. In our LED blinker example, the N2HET1 base
address was added:

34

5 Demo Applications

1 PORT_2_BASE ((Port_RegisterType *) 0xFFF7B848)

Due to our configuration, Data Output Register (DOUT) and Pull Dis-
able Register (PULDIS) are set by calling Port_RefreshPin (Chapter
3, Section 3.3). In case of different configuration, Data Direction Reg-
ister (DIR) or functionality of a pin (FUN register) may be changed.
As mentioned in the Chapter 3, pins are defined with symbolic names
and values. Values are defined in a way that a port number, a mask
number and a pin number can be derived from a particular value. How
this number are derived can be found in the source code. The value of
our pin is set to 0×021b.

5.1.2 Pin Multiplexing
The used LED for TMS570LS3137 HDK is driven by signal N2HET1[27].
The TMS570LS3137 device uses I/O Multiplexing and Control Module
to control the input/output multiplexing on the device. Multiplexors
are controlled by the memory-mapped PINMMRx registers that effect
functionality of the particular pin ball.
For our case, the base address of 0×FFFFEB10 that represents byte field
PINMMR0[31:0] is utilized. The N2HET1[27] is then represented by the
selection bit PINMMR0[26]. The code that set and clears particular bits
was added in order to hack N2HET1[27] to the pin A9.
In the LED blinker examples, after the RTE calls the function for setting
a digital output, the signal is mapped to a IoHwAb port where the
quality of signal is determined. If the quality is good, the task provides
setting of the digital output via the call of DIO function. Detailed calling
sequence is described in section 5.1.5.

5.1.3 Configuration of DIO Driver
Similarly as configuration of the Port driver, the DIO driver includes
types that are used to define channels and ports. Dio_ChannelType is
the type representing a numerical ID of a channel. A numerical ID of a
port is described by defining Dio_PortType.
In our examples, DIO channels are described by a symbolic name de-
fined in Port_Cfg.h. That means values of Dio_ChannelType and
Port_PinType remain the same.

5.1.4 Changes for the RPP Board
The RPP board does not include a LED located on the board. Due to
this fact, a pin marked as FANCONTROL was used as GPIO. The LED
was connected to this pin. Since a Data Modification Module (DMM)

35

5 Demo Applications

pin was used for the GPIO purpose, the parameter whether DMM is
used was added. The only change in the configuration of the used pin
is the change of the parameter DMM used to value Yes. Furthermore,
instead of the N2HET1 base address, the DMM base address was added
as follows:

1 PORT_3_BASE ((Port_RegisterType *) 0xFFFFF76C)

Last change for the LED blinker to be functional for the RPP board was
to change the value of the pin to 0×0300.

5.1.5 Calling sequence
This section describes sequence of calling of functions in order to set the
new level value of a pin which will lead to LED blinking.
After the booting a device, an overall initialization is performed. The
Operating System (OS) finds the tasks with the highest priority which
results in call of StartupHook. During this procedure, the OS is started.
After that, the OS starts the application by calling ActivateTask (in our
case activated task is the function Scheduled). The sequence is carried
out through the following modules: OS, RTE, IoHwAb, DIO and results
in setting the new level value of a pin. The sequence is shown in Figure
16.
All the functions are encapsulate within the function that precedes it.
For example, the function Dio_WritePort is called from the function
Dio_WriteChannel which is called from the function
IoHwAb_Set_Digital_DigitalSignal_Led4 and so on as we can see in
the Figure 16. The following were used (starting from the RTE, ending
in the DIO module):

∙ Scheduled
∙ Rte_BlinkerRunnable
∙ BlinkerRunnable
∙ Rte_Call_Blinker_LED_Port_Set
∙ Rte_Digital_Output_Set
∙ DigitalOutput_Set
∙ IoHwAb_Set_Digital
∙ IoHwAb_Set_Digital_DigitalSignal_Led4
∙ Dio_WriteChannel
∙ Dio_WritePort

36

5 Demo Applications

Figure 16 UML sequence diagram for the LED blinker

5.2 CAN Communication – HDK, RPP
This demo application was developed for the both board with the same
settings. This demo has been successfully made working only with one
CAN controller defined (DCAN1). With the both controllers (DCAN1
and DCAN2) an unknown error forced the devices to stop working. The
application was successfully flashed on the target boards. The program-
ming was fine, however, after executing the code, unknown sequence
caused the JTAG lock. We have not been able to connect to the device
through JTAG since that. It detects JTAG chain and targed ID but then
locks on the attempt to initialize ARM debug port. It has been assumed
that an error that might have caused this problem is that 128-bit code
in the OTP (one time programmable) address of AJSM an Advanced
JTAG Security Module (AJSM) was changed which caused securing the
device. Namely, the error during trying to debug was "Unable to access
DAP" (Debug Access Point).

5.2.1 Configuration of Port Driver
The only important thing here is that the base addresses were added for
DCAN1 and DCAN2 controller: 0×FFF7DDE0, 0×FFF7DFE0 respec-

37

5 Demo Applications

tively. The values of pins were defined as 0×0800 for DCAN1 transmis-
sion, 0×0801 for DCAN1 reception, 0×0900 for DCAN2 transmission,
and 0×0901 for DCAN2 reception.

5.2.2 Configuration of COM
The signals used in our CAN communication application are Arg1, Arg2,
ResultSig, FreqIndSig, and FreqReqSig. Signals Arg1 and Arg2 are
both integers (e.g. 3 and 5). These two numbers are then multiplied and
the resulting value is send back as ResultSig. Signal FreqReqSig sends
a new frequency for LED blinking. This signal is received as FreqIndSig.
Tables 1 and 2 show configuration of all these signals:

ComSignal Arg1 ResultSig Arg2
HandleId 0 1 2

IPduHandleId 2 3 2
TransferProperty PENDING TRIGGERED PENDING
SignalInitValue 5 0 3

BitPosition 7 7 15
BitSize 8 8 8

SignalType uint8 uint8 uint8
Notification NULL NULL NULL

Table 1 Configuration of COM signals 1

ComSignal FreqIndSig FreqReqSig
HandleId 3 4

IPduHandleId 0 1
TransferProperty TRIGGERED PENDING
SignalInitValue 0 1000

BitPosition 7 7
BitSize 32 32

SignalType uint32 uint32
Notification NULL Rte_COMCbk_FreqReqSig

Table 2 Configuration of COM signals 2

The Table 3 shows the configuration of PDUs. These PDUs are RX_PDU,
TX_PDU, FreqInd, and FreqReq. They contain signals defined above.
Specifically, RX_PDU contains signal Arg1 and Arg2, TX_PDU contains the
signal ResultSig, FreqInd contains the signal FreqIndSig and FreqReq
contains the signal FreqReqSig.

38

5 Demo Applications

ComIPdu FreqInd FreqReq RX_PDU TX_PDU
SignalProcessing DEFERRED DEFERRED DEFERRED DEFERRED

IPduSize 8 8 8 8
IPduDirection SEND RECEIVE RECEIVE SEND

TxMode DIRECT NONE NONE DIRECT

Table 3 Configuration of I-PDUs

I-PDU signal lists in the source code looks as follows:
1 const ComSignal_type * const ComIPduSignalRefs_FreqInd [] = {
2 &ComSignal [FreqIndSig] ,
3 NULL, } ;
4 const ComSignal_type * const ComIPduSignalRefs_FreqReq [] = {
5 &ComSignal [FreqReqSig] ,
6 NULL, } ;
7 const ComSignal_type * const ComIPduSignalRefs_RX_PDU [] = {
8 &ComSignal [Arg1] ,
9 &ComSignal [Arg2] ,

10 NULL, } ;
11 const ComSignal_type * const ComIPduSignalRefs_TX_PDU [] = {
12 &ComSignal [Resu l tS ig] ,
13 NULL, } ;

5.2.3 Configuration of PDU Router
Configuration of PDU Router was implemented for following PDUs:
RX_PDU, TX_PDU, FreqInd, and FreqReq. These PDUs are described in
Section 5.2.2. The table 4 shows the destination module (DestModule)
and the data provision mode for the PDUs. The table 5 shows the source
module (SrcModule) and the SDU length. The configuration used in our
examples is following:

PduRDestPdu DestModule DataProvision
FreqInd CANIF NO_PROVISION
FreqReq COM NO_PROVISION

RX_PDU COM PDUR_DIRECT
TX_PDU CANIF PDUR_DIRECT

Table 4 Configuration of destination PDUs

PduRRoutingPath FreqInd FreqReq RX_PDU TX_PDU
SrcModule COM CANIF COM CANIF
SduLength 0 0 8 8

Table 5 Configuration of routing paths for PDUs

39

5 Demo Applications

From the tables 4 and 5, we can see that for transmission the source
module is the COM module and the destination module is the CAN In-
terface. Contrarily, for reception the source module is the CAN Interface
module and the destination module is the COM module.

5.2.4 Configuration of CAN Interface
The functionality of the CAN Interface is described in Chapter 3, Sec-
tion 3.10. Chapter 3, Section 3.10 also describes the used parameters
and sequences for a transmit request or a reception indication. The
detailed configuration will not be described in this chapter because of
extensiveness and can be found in the source code.

5.2.5 Configuration of CAN Driver
There are two controller and two HOH objects defined. The controllers
are DCAN1 and DCAN2. Both have the same configuration except their
IDs, references to CPU clocks and lists of HOHs. Their baud rate
is 500, propagation delay is 5 and phase segments are 3. All of pro-
cessing types are PROCESS_TYPE_INTERRUPT which is represented by the
value of 0×00000400. HOH for transmission has an ID TxHwObject
and its type is CAN_OBJECT_TYPE_TRANSMIT. For reception an ID is
RxHwObject and its type is CAN_OBJECT_TYPE_RECEIVE. Both have han-
dle type HANDLE_TYPE_BASIC which represents Basic CAN, ID type
CAN_ID_TYPE_EXTENDED. Furthermore, both have also the same mask
with the value of 0×000007FF.

5.3 Calling sequence
This section describes the calling sequence for sending a signal with
subsequent receiving of a signal.

5.3.1 Transmission
As the first step, a function e.g. Rte_TesterRunnable is called in the
file Rte.c. Writing of signal data is mapped into this function while
generating the RTE. This function is subdivided into three sub-functions.
One part for transmission, one part for reception, and one part where
operations like multiplying of received signals, or setting an alarm may
be defined.
The part for transmission includes the function Com_SendSignal. Pa-
rameters of this function are a signal ID and pointer to signal data.
Within this function Com_WriteSignalDataToPdu is called1. Besides,

1Located in Com_com.c

40

5 Demo Applications

based on configuration, an update bit may be set or signal may be ar-
ranged for transmission trigger. Inside Com_WriteSignalDataToPdu we
finally get data by calling
Com_WriteSignalDataToPduBuffer. After writing signal data to a PDU
buffer, the following OS task is called.
This following task includes two function: Com_MainFunctionTx and
Com_MainFunctionRx. Com_MainFunctionTx 2 causes the transmission.
After verification that an I-PDU should really be sent, the transmis-
sion is triggered by calling Com_TriggerIPduSend. Inside this function
PduR_ComTransmit is called, which forwards a PDU from the COM mod-
ule to the PDU Router module. Parameters of PduR_ComTransmit are
an ID of an outgoing I-PDU and pointer to the routing table. Within
this function PduR_ARC_Transmit is called. The function determines the
destination and returns the function PduR_ARC_RouteTransmit. Based
on a destination, PduR_ARC_RouteTransmit calls the function for trans-
mitting into a right module, in our case to the CAN Interface module,
so CanIf_Transmit is called. Within this function located in CanIf.c,
Can_Write is called, which copies a PDU into CAN hardware by setting
registers in the file Can.c.

5.3.2 Reception
As mentioned above, a function such Rte_TesterRunnable consists of
three sub-functions. The part for reception includes the function
Com_ReceiveSignal3. This function is responsible for reading signal
data from PDU buffer. This is achieved by calling the function
Com_ReadSignalDataFromPduBuffer.
For the indication of reception, Com_MainFunctionRx is called. It is lo-
cated in the same task as Com_MainFunctionTx. Com_MainFunctionRx
is located in Com_Sched.c. If all necessary configuration is set in right
way so all conditions in if statements were met, it invokes receive indi-
cation of a particular signal by this sequence:

1 i f (s i g na l −>ComNoti f icat ion != NULL) {
2 s i g na l −>ComNoti f icat ion () ;
3 }
4 Arc_Signal−>ComSignalUpdated = 0 ;

This notification may be e.g. the RTE callback function that would set
an alarm.

2Located in Com_Sched.c
3Located in Com_com.c

41

6 Conclusion

At the very beginning of realization of the project, I had to get famil-
iar with TMS570LS3137 Hardware Development Kit (HDK) by Texas
Instruments and the AUTOSAR on its own. Software by Texas Instru-
ments, including Code Composer Studio and HalCoGen, was used at
the beginning to demonstrate basic applications running on this hard-
ware development kit. Then, I had to develop several demo application
based on ArcCore platform. The main disadvantage of the development
process was that commercial plugins to Arctic Studio were not avail-
able. Due to this fact, the development was in form in creating and
modifying source code by hand. This was very helpful from my point
of view because by studying the source code instead of using tools that
would generate it, I had a chance to get a little deeper insight into basic
software modules included in the AUTOSAR architecture.
As for writing the code for demo examples, configuration files of basic
software modules needed for LED blinker and CAN communication ex-
amples had to be created. The key ideas were taken from examples for
other target boards such as STM3210C-EVAL, iSYSTEM MPC551x, or
TMDX570LS20 SMDK. Nevertheless, to make demo applications run-
ning, some core files of basic software modules included in Artic Core
architecture had to be modified as well. Our examples were meant to
be developed for TMS570LS3137 HDK and subsequently for RPP board
which uses the same microcontroller. During the development process,
documentation of the target board and its microcontroller have had to
be studied to get better idea how the device works. Nonetheless, AU-
TOSAR documentation have had to be simultaneously studied as well
to understand the concept of this standard and functionality and inter-
connection of its basic software modules.
LED Blinker application was successfully made running for both target
boards. For TMS570LS3137 HDK GIO pins with LEDs were used. How-
ever, RPP board does not contain any LEDs, so a LED was connected
to DMM pin which is labeled as FAN_CONTROL in the documentation.
CAN communication application was compiled. This example was func-
tional only if one CAN controller on TMS570LS3137 HDK was defined
(specifically DCAN1). From this controller a message was sent and pro-
cess of reception seemed to be functional as well. However, after DCAN2
was initialized as well in order to exchange messages between these two
controllers, the hardware (CPU) stopped working. This bug caused

42

6 Conclusion

JTAG device to stop working. Due to this reason, we were not able
to connect to the device through JTAG after that. The detailed ex-
planation of this error is described in Chapter 5, Section 3.11. Several
experiments have been tried in order to make the JTAG working. By
the date of finishing this project (May 2013), this problem has not been
solved, even with the help of Texas Instruments (http://e2e.ti.com/
support/microcontrollers/hercules/f/312/t/264498.aspx).

43

http://e2e.ti.com/support/microcontrollers/hercules/f/312/t/264498.aspx
http://e2e.ti.com/support/microcontrollers/hercules/f/312/t/264498.aspx

Appendix A

Content of the Attached CD

∙ The thesis in *.pdf format
∙ The source code of Artic Core and created demo applications.
∙ Diff file showing changes made during the development of the
demo applications (*.patch format)

44

Bibliography

[1] TMS570LS3137. http://rtime.felk.cvut.cz/hw/index.php/
TMS570LS3137. (Visited on 05/12/2013).

[2] Simon Fürst and Heiko Dörr. “AUTOSAR – An open standard-
ized software architecture for the automotive industry”. In: 1st
AUTOSAR Open Conference & 8th AUTOSAR Premium Mem-
ber Conference. BMW. Cobo Center, Detroit, MI, USA, Oct. 2008.

[3] AUTOSAR Basics. http://www.autosar.org/index.php?p=1&
up=1&uup=0. (Visited on 05/12/2013).

[4] AUTOSAR Technical Overview. http : / / www . autosar . org /
index.php?p=1&up=2&uup=0. (Visited on 05/12/2013).

[5] AUTOSAR GbR. AUTOSAR - The Worldwide Automotive Stan-
dard for E/E Systems - EN. http://www.autosar.org/download/
papersandpresentations/AUTOSAR_Brochure_EN.pdf.

[6] Rao Nagarjuna Kandimala. Automotive Open System Architecture
& DaVinci Developer Software. Tech. rep. Czech Technical Uni-
versity in Prague, Prague, Aug. 2012.

[7] Nico Naumann. AUTOSAR Runtime Environment and Virtual
Function Bus. Tech. rep. Department for System Analysis and
Modeling, Hasso-Plattner-Institute für Softwaresystemtechnik, Pots-
dam, 2009.

[8] Robert Warschofsky. AUTOSAR Software Architecture. Tech. rep.
Hasso-Plattner-Institute für Softwaresystemtechnik, Potsdam, 2009.

[9] Global Tier1 chooses ARCCORE solutions. http://www.arccore.
com/2013/05/global- tier1- chooses- arccore- solutions/.
2013-05-06. (Visited on 05/12/2013).

[10] ArcCore Products. http://www.arccore.com/products/. (Vis-
ited on 05/12/2013).

[11] Toolchain Workflow. http://www.arccore.com/wiki/Toolchain_
Workflow. (Visited on 05/12/2013).

[12] AUTOSAR GbR. Model Persistence Rules for XML. 2.4.0. Nov.
2011.

[13] AUTOSAR GbR. Specification of RTE. 3.2.0. Oct. 2011.
[14] AUTOSAR GbR. Project Objectives. 3.0.0. Nov. 2011.

45

http://rtime.felk.cvut.cz/hw/index.php/TMS570LS3137
http://rtime.felk.cvut.cz/hw/index.php/TMS570LS3137
http://www.autosar.org/index.php?p=1&up=1&uup=0
http://www.autosar.org/index.php?p=1&up=1&uup=0
http://www.autosar.org/index.php?p=1&up=2&uup=0
http://www.autosar.org/index.php?p=1&up=2&uup=0
http://www.autosar.org/download/papersandpresentations/AUTOSAR_Brochure_EN.pdf
http://www.autosar.org/download/papersandpresentations/AUTOSAR_Brochure_EN.pdf
http://www.arccore.com/2013/05/global-tier1-chooses-arccore-solutions/
http://www.arccore.com/2013/05/global-tier1-chooses-arccore-solutions/
http://www.arccore.com/products/
http://www.arccore.com/wiki/Toolchain_Workflow
http://www.arccore.com/wiki/Toolchain_Workflow

Bibliography

[15] AUTOSAR GbR. Layered Software Architecture. 3.2.0. Oct. 2011.
[16] AUTOSAR GbR. Specification of ECU State Manager. 3.0.0. Nov.

2011.
[17] AUTOSAR GbR. Specification of MCU Driver. 3.2.0. Dec. 2012.
[18] AUTOSAR GbR. Requirements on MCU Driver. 3.0.0. Mar. 2009.
[19] AUTOSAR GbR. Specification of Port Driver. 3.2.0. Nov. 2010.
[20] AUTOSAR GbR. Requirements on Port Driver. 2.0.5. Dec. 2009.
[21] AUTOSAR GbR. Specification of I/O Hardware Abstraction. 3.2.0.

Nov. 2011.
[22] AUTOSAR GbR. Specification of DIO Driver. 2.5.0. Sept. 2011.
[23] AUTOSAR GbR. Requirements on DIO Driver. 2.1.0. Oct. 2010.
[24] AUTOSAR GbR. Specification of Communication. 4.2.0. Nov. 2011.
[25] AUTOSAR GbR. Requirements on Communication. 3.1.0. Sept.

2011.
[26] AUTOSAR GbR. Specification of PDU Router. 3.2.0. Nov. 2011.
[27] AUTOSAR GbR. Specification of CAN Interface. 5.0.0. Dec. 2011.
[28] AUTOSAR GbR. Specification of CAN Driver. 4.0.0. Nov. 2011.
[29] AUTOSAR GbR. Requirements on CAN. 4.0.0. Oct. 2011.
[30] AUTOSAR GbR. Specification of Operating System. 5.0.0. Nov.

2011.
[31] Texas Intruments Inc. TMS570LS31x/21x 16/32-Bit RISC Flash

Microcontroller - Technical Reference Manual. SPNU499A. Nov.
2012.

[32] Texas Instruments Inc. TMS570LS3137 16/32-Bit RISC Flash Mi-
crocontroller. SPNS162A. Nov. 2012.

[33] Texas Instruments Inc. TMS570LS31x Hercules Development Kit
(HDK) - User’s Guide. SPNU509A. Sept. 2012.

[34] ARM Holdings. Cortex-R4 and Cortex-R4F Technical Reference
Manual. r1p4. 2011.

[35] Gareth Leppla. “Mapping Requirements To AUTOSAR Software
Components”. Master’s Thesis. Waterford Institute of Technology,
2008.

[36] Michal Horn. “Software obsluhující periferie a FlexRay na automo-
bilové řídicí jednotce”. Master’s Thesis. Czech Technical University
in Prague, 2013.

46

	Introduction
	AUTOSAR
	Why AUTOSAR?
	Foundation
	Goals and Plans
	Future Plans

	Software Architecture
	Virtual Function Bus
	Basic Software
	Run-Time Environment
	Application Software
	Sensor/Actuator Software Components
	Application (composite) software components

	Methodology

	Used AUTOSAR BSW Modules
	System Services
	ECU State Manager
	STARTUP State
	RUN State
	SHUTDOWN State
	WAKEUP State

	Microcontroller Drivers
	MCU Driver

	Port Driver
	Configuration of the MCU port/port pins

	I/O Hardware Abstraction
	DIO Driver
	Read & Write Services
	Dio_ReadPort
	Dio_WritePort
	Dio_ReadChannel
	Dio_WriteChannel

	Configuration of the DIO driver

	Relationship between PORT Driver and DIO Driver
	CAN Communication – Layered Architecture Flow
	Signal
	SDU
	PCI
	PDU
	PDU & SDU Naming Conventions

	COM Module
	PDU Router
	CAN Interface
	Initialization sequence
	Hardware Object Handles (HOH)
	Transmit request sequence
	Reception indication sequence

	CAN Driver

	ArcCore
	Software Implementation in General
	Open Source Licensed Products
	Source Tree Examples

	Commercial Plugins
	SWC Builder
	Extract Builder
	BSW Builder
	RTE Builder

	Demo Applications
	LED Blinker – HDK
	Configuration of Port Driver
	Pin Multiplexing
	Configuration of DIO Driver
	Changes for the RPP Board
	Calling sequence

	CAN Communication – HDK, RPP
	Configuration of Port Driver
	Configuration of COM
	Configuration of PDU Router
	Configuration of CAN Interface
	Configuration of CAN Driver

	Calling sequence
	Transmission
	Reception

	Conclusion
	Content of the Attached CD
	Bibliography

